新课标高二数学教案范例精彩8篇
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“新课标高二数学教案范例精彩8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
新课标高二数学教案范文【第一篇】
学习目标:
1、了解本章的学习的内容以及学习思想方法。
2、能叙述随机变量的定义。
3、能说出随机变量与函数的关系,
4、能够把一个随机试验结果用随机变量表示。
重点:能够把一个随机试验结果用随机变量表示。
难点:随机事件概念的透彻理解及对随机变量引入目的的认识:
环节一:随机变量的定义。
1.通过生活中的一些随机现象,能够概括出随机变量的定义。
2能叙述随机变量的定义。
3能说出随机变量与函数的区别与联系。
一、阅读课本33页问题提出和分析理解,回答下列问题?
1、了解一个随机现象的规律具体指的是什么?
2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?
总结:
3、随机变量。
(1)定义:
这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的。
到的映射。
(2)表示:随机变量常用大写字母.等表示.
(3)随机变量与函数的区别与联系。
函数随机变量。
自变量。
因变量。
因变量的范围。
相同点都是映射都是映射。
环节二随机变量的应用。
1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件。
例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案.这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。
例2连续投掷一枚均匀的硬币两次,用x表示这两次正面朝上的次数,则x是一个随机变。
量,分别说明下列集合所代表的随机事件:
(1){x=0}(2){x=1}。
(3){x2}(4){x0}。
变式:连续投掷一枚均匀的硬币三次,用x表示这三次正面朝上的次数,则x是一个随机变量,x的可能取值是?并说明这些值所表示的随机试验的结果.
练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。
(1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;。
小结(对标)。
新课标高二数学教案范文【第二篇】
教学目标:
(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.
(2)理解直线与二元一次方程的关系及其证明。
(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.
教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.
教学用具:计算机。
教学方法:启发引导法,讨论法。
教学过程:
下面给出教学实施过程设计的简要思路:
教学设计思路:
(一)引入的设计。
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是,属于二元一次方程,因为未知数有两个,它们的次数为一次.
肯定学生回答,并纠正学生中不规范的表述.再看一个问题:
问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的次数为一次.
肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的次数为一次”.
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
问题1“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计。
这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.
学生或独立研究,或合作研究,教师巡视指导.
经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:
思路一:…。
思路二:…。
……。
教师组织评价,确定方案(其它待课下研究)如下:
按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.
当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.
当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.
综合两种情况,我们得出如下结论:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.
至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.
同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式.
这样上边的结论可以表述如下:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.
启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?
问题2任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?
师生共同讨论,评价不同思路,达成共识:
(1)当时,方程可化为。
这是表示斜率为、在轴上的截距为的直线.
(2)当时,由于、不同时为0,必有,方程可化为。
这表示一条与轴垂直的直线.
因此,得到结论:
在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.
为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.
动画演示。
演示“”文件,体会任何二元一次方程都表示一条直线.
至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.
(三)练习巩固、总结提高、板书和作业等环节的设计在此从略。
新课标高二数学教案范文【第三篇】
几类常见的问题
(一) 含参数的不等式的解法
例1解关于x的不等式 .
例2解关于x的不等式 .
例3解关于x的不等式 .
例4解关于x的不等式
例5 满足 的x的集合为a;满足 的x
的集合为b 1 若ab 求a的取值范围 2 若ab 求a的取值范围 3 若ab为仅含一个元素的集合,求a的值.
(二)函数的最值与值域
例6 求函数 的最大值,下列解法是否正确?为什么?
解一: ,
解二: 当 即 时,
例7 若 ,求 的最值。
例8 已知x , y为正实数,且 成等差数列, 成等比数列,求 的取值范围.
例9 设 且 ,求 的最大值
例10 函数 的最大值为9,最小值为1,求a,b的值。
1.
2. , 若 ,求a的取值范围
3.
4.
5.当a在什么范围内方程: 有两个不同的负根
6.若方程 的两根都对于2,求实数m的范围
7.求下列函数的最值:
1
2
时求 的最小值, 的最小值
2设 ,求 的最大值
3若 , 求 的最大值
4若 且 ,求 的最小值
9.若 ,求证: 的最小值为3
10.制作一个容积为 的圆柱形容器(有底有盖),问圆柱底半径和
高各取多少时,用料最省?(不计加工时的损耗及接缝用料)
新课标高二数学教案范文【第四篇】
1.函数单调性的定义:
(1)一般地,设函数的定义域为a,区间.
如果对于区间i内的任意两个值,当时,都有_______________,那么就说在区间i上是单调增函数,i称为的___________________.
如果对于区间i内的任意两个值,当时,都有_______________,那么就说在区间i上是单调减函数,i称为的___________________.
(2)如果函数在区间i上是单调增函数或单调减函数,那么就说在区间i上具有___________性,单调增区间或单调减区间统称为____________________.
2.复合函数的单调性:
对于函数如果当在区间上和在区间上同时具有单调性,则复合函数在区间上具有__________,并且具有这样的规律:___________________________.
3.求函数单调区间或证明函数单调性的方法:
(1)______________;(2)____________________;(3)__________________.
自我检测。
1.函数在r上是减函数,则的取值范围是___________.
2.函数在上是_____函数(填增或减).
3.函数的单调区间是_____________________.
4.函数在定义域r上是单调减函数,且,则实数a的取值范围是________________________.
5.已知函数在区间上是增函数,则的大小关系是_______.
6.函数的单调减区间是___________________.
例1填空题:
(1)若函数的单调增区间是,则的递增区间是_________.
(2)函数的单调减区间是________________.
(3)若上是增函数,则a的取值范围是_____________.
(4)若是r上的减函数,则a的取值范围是_________.
例2求证:函数在区间上是减函数.
例3已知函数对任意的,都有,且当时,.
(1)求证:是r上的增函数;。
(2)若,解不等式.
1.函数单调减区间是_________________.
2.若函数在区间上具有单调性,则实数a的取值范围是______.
3.已知函数是定义在上的'增函数,且,则实数x的取值范围是_________________________.
4.已知在内是减函数,,且,设,,则a,b的大小关系是_________________.
5.若函数上都是减函数,则上是______.(填增函数或减函数)。
6.函数的递减区间是________________.
7.已知函数上单调递减,则a的取值范围是_________.
8.已知函数满足对任意的,都有成立,则a的取值范围是_________.
9.确定函数的单调性.
10.已知函数是定义在上的减函数,且满足,,若,求的取值范围.
错题卡题号错题原因分析。
高二数学教案:数的单调性教案(答案)。
一、课前准备:
1.(1),单调增区间,,单调减区间,
(2)单调,单调区间。
2.单调性,同则增异则减。
3.(1)定义法(2)图象法(3)导函数法。
自我检测。
增3.和4.
二、课堂活动:
例1。
(1)(2)(3)(4)。
例2证明:设。
例3(1)证明:
(2)解:
三、课后作业。
5.减函数
9.解:定义域为,任取,且。
10.解:
新课标高二数学教案范文【第五篇】
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
向量的性质及相关知识的综合应用。
(一)主要知识:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略。
1、进一步熟练有关向量的运算和证明;能运用解三角形的'知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。
新课标高二数学教案范文【第六篇】
这是一个特殊的线性规划问题,再来研究它的解法。
c.改变这个例子的个别条件,再来研究它的解法。
将这个例子中方木料存有量改为,其他条件不变,则。
作出可行域,如图阴影部分,且过可行域内点m(100,400)而平行于的直线离原点的距离最大,所以最优解为(100,400),这时(元)。
故生产书桌100、书橱400张,可获最大利润56000元。
总结、扩展。
1.线性规划问题的数字模型。
2.线性规划在两类问题中的应用。
布置作业。
到附近的工厂、乡镇企业、商店、学校等作调查研究,了解线性规划在实际中的应用,或提出能用线性规划的知识提高生产效率的实际问题,并作出解答。把实习和研究活动的成果写成实习报告、研究报告或小论文,并互相交流。
探究活动。
如何确定水电站的位置。
由,,得b(300,700).于是直线的方程为。
即
新课标高二数学教案范文【第七篇】
(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.
2、过程与方法。
通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.
3、情态与价值。
通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.
教学重难点。
重点:理解正角、负角和零角的定义,掌握终边相同角的表示法.
难点:终边相同的角的表示.
教学工具。
投影仪等.
教学过程。
创设情境。
思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了。
小时,你应当如何将它校准?当时间校准以后,分针转了多少度?
[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.
探究新知。
1.初中时,我们已学习了角的概念,它是如何定义的呢?
[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置ob,就形成角a.旋转开始时的射线叫做角的始边,ob叫终边,射线的端点o叫做叫a的顶点.
[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).
8.学习小结。
(1)你知道角是如何推广的吗?
(2)象限角是如何定义的呢?
(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直。
线上的角的集合.
五、评价设计。
1.作业:习题组第1,2,3题.
2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,
进一步理解具有相同终边的角的特点.
课后小结。
(1)你知道角是如何推广的吗?
(2)象限角是如何定义的呢?
(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直。
线上的角的集合.
课后习题。
作业:
1、习题组第1,2,3题.
2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,
进一步理解具有相同终边的角的特点.
板书。
略
新课标高二数学教案范文【第八篇】
知识点精讲。
三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。
三角函数式的求值的类型一般可分为:。
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
注意点:灵活角的变形和公式的变形重视角的范围对三角函数值的影响,对角的范围要讨论。
课堂小结。
三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。
三角函数式的求值的类型一般可分为:。
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
三角函数式常用化简方法:切割化弦、高次化低次。
注意点:灵活角的变形和公式的变形。
重视角的范围对三角函数值的影响,对角的范围要讨论。