等式的性质教学反思精编3篇
【路引】由阿拉题库网美丽的网友为您整理分享的“等式的性质教学反思精编3篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
小学数学《等式的性质》优秀教案1
教学目标:
1、使学生在情景中理解“等式的两边同时乘或除以一个不为0的数,所得的结果仍然使等式”,会用等式的这个性质解只含有乘法或除法运算的简单方程。
2、使学生在观察、分析、抽象、概念和交流的过程中,进一步积累数学活动的经验,感受方程的思想方法,发展初步的抽象思维能力。
教学重点:对等式的性质进一步的理解,解含有乘、除法的方程。
教学过程:
一、教学新课
1、教学例5
(1)我们已经学会了根据“等式的两边同时加上或减去一个数,结果仍是等式”的性质解方程
今天我们将继续学习解方程的知识。
(2)出示例5第一组图。
根据左边的图,你能列出等式吗?(x=20)
右边的图与左边的图比较,有什么变化?
你认为天平还会平衡吗?
你能根据右边图物体的质量相等关系再列出一个等式吗?(2x=20×2)
这个等式又告诉我们什么呢?在小组中说说你的发现。
小组中互相说想法,汇报。
(等式的两边同时乘一个数,所得的结果仍然是等式)
想像一下,如果20=20的左右两边同时乘3,所得的结果仍然是等式吗?
用等式如何表示呢?(20×3=20×3)
如果左右两边同时乘0呢?可以吗?
(3)出示第二组图。
左边的图能看懂吗?用等式怎样表示?(3x=20×3),也就是3x=60,左边的图与右边的相比,物体的质量发生了怎样的变化?
天平还会平衡吗?
你能根据质量的变化情况列出等式吗?
这又说明了什么?
(等式的两边同时除以一个数,所得的结果仍然是等式)
你能自己写一个等式,并把等式两边同时除以一个数,看看结果还是等式吗?
尝试练习,汇报。
有什么发现?两边同时除以0呢?为什么?
指出:等式的两边同时除以一个不为0的数,所得的结果仍然是等式。
(4)归纳。
通过对两组图的观察,你认为等式又有什么性质呢?
(等式两边同时乘或除以一个不为0的数,所得的结果仍然是等式。)
指出:这也是等式的性质。
(5)完成练一练第1题。
独立完成填写。
X÷6×6和÷化简后应是多少?
2、教学例6。
(1)出示例6。
长方形的面积公式是什么?
你能根据这个数量关系列出方程吗?(40x=960)
40、x、960各表示什么?
应该怎样解这个方程呢?小组讨论。
汇报讨论结果。
你怎样想到方程两边都除以40的呢?
这样做的依据是什么?
学生在书上完成,展示学生解题过程。
40x=960
解:40x÷40=960÷40
X=24
检验:40×24=960
答:试验田的宽是24米。
如何检验?
谁能说一说解这个方程,最关键是什么?
(2)完成试一试。
要使左边只剩下x,应该怎么办?
独立完成解答,集体核对。
(3)完成练一练第2题。
说说每题应该怎样解,独立解答。
汇报解题过程,集体核对。
二、巩固练习
1、完成练习二第1题。
独立完成,小组交流。
2、完成练习二第2题。
每题中解方程时分别省略了什么?
指出:我们在解答时,也可以应用这样的方法。
3、完成练习二第3题。
独立完成,展示作业,集体核对。
4、完成练习二第4题。
从图中可以看出什么数量关系?
平行四边形的面积公式是什么?
独立完成。
三、课堂总结
本节课,你有什么收获?说说你得到的知识?
在解方程时,关键是什么?要注意什么?
板书设计:
等式的性质和解方程
等式两边同时乘或除以一个不为0的数,
所得的结果仍然是等式。
40x=960
解:40x÷40=960÷40
X=24
检验:40×24=960
答:试验田的宽是24米。
上面内容就是差异网为您整理出来的3篇《等式的性质教学反思》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。
小学数学《等式的性质》优秀教案2
一、目的要求
使学生会用移项解方程,一元一次方程 利用等式的性质解方程。
二、内容分析
从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。
x=a的形式有如下特点:
(1)没有分母;
(2)没有括号;
(3)未知项在方程的一边,已知项在方程的另一边;
(4)没有同类项;
(5)未知数的系数是1。
在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。
根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。
解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。
用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。
如解方程 7x-2=6x-4
时,用移项可直接得到 7x-6x=4+2。
而用等式性质1,一般要用两次:
(1)两边都减去6x; (2)两边都加上2,初中数学教案《数学教案-第四章 一元一次方程 利用等式的性质解方程》。
因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。
三、教学过程
复习提问:
(1)叙述等式的性质。
(2)什么叫做方程的解?什么叫做解方程?
新课讲解:
1.利用等式性质1可以解一些方程。例如,方程 x-7=5
的两边都加上7,就可以得到 x=5+7,
x=12。
又如方程 7x=6x-4
的两边都减去6x,就可以得到 7x-6x=-4,
x=-4。
然后问学生如何用等式性质1解下列方程 3x-2=2x+1。
2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。
等式的性质教学反思3
等式的性质(关于乘除的),是在学生掌握了等式的性质(关于加减的)的基础上教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、猜想入手,激发学习兴趣
猜想是学生感知事物作出初步的未经证实的判断,它是学生获取知识过程中的重要环节。因此,在教学中鼓励学生大胆猜想:在一个等式两边同时乘或除以同一个数,所得结果还会是等式吗?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。
二、操作验证,培养探索能力
在探究等式的性质(关于乘除的)时,安排了两次操作活动。首先让学生把一个等式两边同时乘或除以同一个数,然后思考讨论:所得结果还会是等式吗?引导学生发现所得结果仍然是等式。然后再让学生把等式两边同时乘或除以“0”,结果怎么样?通过两次实践活动,学生亲自参与了等式的性质发现过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
三、发散思维,培养解决问题能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出等式的性质(关于乘除的)。通过“摆写想说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。
在本课教学中,也有值得进一步探讨的问题。例如:让学生运用“猜想——验证”的方法探索规律,感悟等式的性质,这样的学习方式,学困生更像一个旁观者,教师该怎么办?