首页 > 学习资料 > 初中教案 >

初中数学公开课教案 4篇

网友发表时间 1247237

【前言导读】此篇优秀教案“初中数学公开课教案 4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

初中数学公开课教案1

一、 教学目标

1、 知识与技能目标

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、 能力与过程目标

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、 情感与态度目标

通过学生自己探索出法则,让学生获得成功的喜悦。

二、 教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

三、 教学过程

1、 创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

学生:26米。

教师:能写出算式吗?

学生:……

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

2、 小组探索、归纳法则

(1)教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

① 2×3

2看作向东运动2米,×3看作向原方向运动3次。

结果:向 运动 米

2 ×3=

② -2 ×3

-2看作向西运动2米,×3看作向原方向运动3次。

结果:向 运动 米

-2 ×3=

③ 2 ×(-3)

2看作向东运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

2 ×(-3)=

④ (-2) ×(-3)

-2看作向西运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

(-2) ×(-3)=

(2)学生归纳法则

①符号:在上述4个式子中,我们只看符号,有什么规律?

(+)×(+)=( ) 同号得

(-)×(+)=( ) 异号得

(+)×(-)=( ) 异号得

(-)×(-)=( ) 同号得

②积的绝对值等于 。

③任何数与零相乘,积仍为 。

(3)师生共同用文字叙述有理数乘法法则。

3、 运用法则计算,巩固法则。

(1)教师按课本P75 例1板书,要求学生述说每一步理由。

(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。

(3)学生做练习,教师评析。

(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

初中数学公开课教案2

一、教学目的:

1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

二、重点、难点

1.教学重点:菱形的两个判定方法.

2.教学难点:判定方法的证明方法及运用.

三、例题的意图分析

本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

四、课堂引入

1.复习

(1)菱形的定义:一组邻边相等的平行四边形;

(2)菱形的性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;

(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

2.问题

要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

3.探究

(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

通过演示,容易得到:

菱形判定方法1 对角线互相垂直的平行四边形是菱形.

注意此方法包括两个条件:

(1)是一个平行四边形;

(2)两条对角线互相垂直.

通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:

菱形判定方法2 四边都相等的四边形是菱形.

五、例习题分析

例1 (教材P109的例3)略

例2(补充)已知:如图 ABCD的对角线AC的'垂直平分线与边AD、BC分别交于E、F.

求证:四边形AFCE是菱形.

证明:∵ 四边形ABCD是平行四边形,

∴ AE∥FC.

∴ ∠1=∠2.

又 ∠AOE=∠COF,AO=CO,

∴ △AOE≌△COF.

∴ EO=FO.

∴ 四边形AFCE是平行四边形.

又 EF⊥AC,

∴ AFCE是菱形(对角线互相垂直的平行四边形是菱形).

※例3(选讲) 已知:如图,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.

求证:四边形CEHF为菱形.

略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.

六、随堂练习

1.填空:

(1)对角线互相平分的四边形是 ;

(2)对角线互相垂直平分的四边形是________;

(3)对角线相等且互相平分的四边形是________;

(4)两组对边分别平行,且对角线 的四边形是菱形.

2.画一个菱形,使它的两条对角线长分别为6cm、8cm.

3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

七、课后练习

1.下列条件中,能判定四边形是菱形的是 ( ).

(A)两条对角线相等 (B)两条对角线互相垂直

(C)两条对角线相等且互相垂直 (D)两条对角线互相垂直平分

2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.

3.做一做:

设计一个由菱形组成的花边图案.花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.

初中数学公开课优秀教案3

圆和圆的位置关系

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:两圆的位置关系和两圆相交、相切的性质。它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识。

难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用。由于两圆位置关系有5种类型,特别是相离有外离和内含,相切有外切和内切,学生容易遗漏;而在相交圆的性质应用中,学生容易把“相交两圆的公共弦垂直平分两圆的连心线。”看成是真命题。

2、教法建议

本节内容需要两个课时。第一课时主要研究圆和圆的位置关系;第二课时相交两圆的性质。

(1)把课堂活动设计的重点放在如何调动学生的主体,让学生观察、分析、归纳概括,主动获得知识;

(2)要重视圆的对称美的教学,**学生欣赏,在激发学生的学习兴趣中,获得知识,提高能力;

(3)在教学中,以分类思想为指导,以数形结合为方法,贯串整个教学过程。

第一课时 圆和圆的位置关系

教学目标:

1.掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质;

2.通过两圆的位置关系,培养学生的分类能力和数形结合能力;

3.通过演示两圆的位置关系,培养学生用运动变化的观点来分析和发现问题的能力。

教学重点:

两圆的五种位置与两圆的半径、圆心距的数量之间的关系。

教学难点:

两圆位置关系及判定。

(一)复习、引出问题

1.复习:直线和圆有几种位置关系?各是怎样定义的?

(教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交。各种位置关系是通过直线与圆的公共点的个数来定义的

2.引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?

(二)观察、分类,得出概念

1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:

(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离。(图(1))

(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切。这个唯一的公共点叫做切点。(图(2))

(3)相交:两个圆有两个公共点,此时叫做这两个圆相交。(图(3))

(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切。这个唯一的公共点叫做切点。(图(4))

(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例。 (图(6))

2、归纳:

(1)两圆外离与内含时,两圆都无公共点。

(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一

(3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切).

教师**学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交。除以上关系外,还有其它关系吗?可能不可能有三个公共点?

结论:在同一平面内任意两圆只存在以上五种位置关系。

(三)分析、研究

1、相切两圆的性质。

让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质:

如果两个圆相切,那么切点一定在连心线上。

这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明

2、两圆位置关系的数量特征。

设两圆半径分别为R和r.圆心距为d,**学生研究两圆的五种位置关系,r和d之间有何数量关系。(图形略)

两圆外切

d=R+r; 两圆内切

d=R-r (R>r); 两圆外离

d>R+r; 两圆内含

dr); 两圆相交

R-r说明:注重“数形结合”思想的教学。

(四)应用、练习

例1: 如图,⊙O的半径为5厘米,点P是⊙O外一点,OP=8厘米

求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?

(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?

解:

(1)设⊙P与⊙O外切与点A,则

PA=PO-OA

∴PA=3cm.

(2)设⊙P与⊙O内切与点B,则

PB=PO+OB

∴PB=1 3cm.

例2:已知:如图,△ABC中,∠C=90°,AC=12,BC=8,以AC为直径作⊙O,以B为圆心,4为半径作。

求证:⊙O与⊙B相外切。

证明:连结BO,∵AC为⊙O的直径,AC=12,

∴⊙O的半径

,且O是AC的中点 ∴

,∵∠C=90°且BC=8, ∴

, ∵⊙O的半径

,⊙B的半径

, ∴BO=

,∴⊙O与⊙B相外切。

练习(P138)

(五)小结

知识:①两圆的五种位置关系:外离、外切、相交、内切、内含;

②以及这五种位置关系下圆心距和两圆半径的数量关系;

③两圆相切时切点在连心线上的性质。

能力:观察、分析、分类、数形结合等能力。

思想方法:分类思想、数形结合思想。

(六)作业

教材P151中习题A组2,3,4题。

第二课时 相交两圆的性质

教学目标

1、掌握相交两圆的性质定理;

2、掌握相交两圆问题中常添的辅助线的作法;

3、通过例题的分析,培养学生分析问题、解决问题的能力;

4、结合相交两圆连心线性质教学向学生渗透几何图形的对称美。

教学重点

相交两圆的性质及应用。

教学难点

应用轴对称来证明相交两圆连心线的性质和准确添加辅助线。

教学活动设计

(一)图形的对称美

相切两圆是以连心线为对称轴的对称图形。相交两圆具有什么性质呢?

(二)

观察、猜想、证明

1、观察:同样相交两圆,也构成对称图形,它是以连心线为对称轴的轴对称图形。

2、猜想:“相交两圆的连心线垂直平分公共弦”。

3、证明:

对A层学生让学生写出已知、求证、证明,教师**;对B、C层在教师引导下完成。

已知:⊙O1和⊙O2相交于A,B.

证:Q1O2是AB的垂直平分线。

分析:要证明O1O2是AB的垂直平分线,只要证明O1O2上的点和线段AB两个端点的距离相等,于是想到连结O1A、O2A、O1B、O2B.

证明:连结O1A、O1B、 O2A、O2B,∵O1A=O1B,

∴O1点在AB的垂直平分线上。

又∵O2A=O2B,∴点O2在AB的垂直平分线上。

因此O1O2是AB的垂直平分线。

也可考虑利用圆的轴对称性加以证明:

∵⊙Ol和⊙O2,是轴对称图形,∴直线O1O2是⊙Ol和⊙O2的对称轴。

∴⊙Ol和⊙O2的公共点A关于直线O1O2的对称点即在⊙Ol上又在⊙O2上。

∴A点关于直线O1O2的对称点只能是B点,

∴连心线O1O2是AB的垂直平分线。

定理:相交两圆的连心线垂直平分公共弦。

注意:相交两圆连心线垂直平分两圆的公共弦,而不是相交两圆的公共弦垂直平分两圆的连心线。

(三)应用、反思

例1、已知两个等圆⊙Ol和⊙O2相交于A,B两点,⊙Ol经O2。

求∠OlAB的度数。

分析:由所学定理可知,O1O2是AB的垂直平分线,

⊙O1与⊙O2是两个等圆,因此连结O1O2和AO2,AO1,△O1AO2构成等边三角形,同时可以推证⊙O l和⊙O2构成的图形不仅是以O1O2为对称轴的轴对称图形,同时还是以AB为对称轴的轴对称图形。从而可由

∠OlAO2=60°,推得∠OlAB=30°.

解:⊙O1经过O

2,⊙O1与⊙O2是两个等圆

∴OlA= O1O2= AO2

∴∠O1A O2=60°,

又AB⊥O1O2

∴∠OlAB =30°

.

例2、已知,如图,A是⊙O l、⊙O2的一个交点,点P是O1O2的中点。过点A的直线MN垂直于PA,交⊙O l、⊙O2于M、N。

求证:AM=AN.

证明:过点Ol、O2分别作OlC⊥MN、O2D⊥MN,垂足为C、D,则OlC∥PA∥O2D,且AC=

AM,AD=

AN.

∵OlP= O2P ,∴AD=AM,∴AM=AN.

3、已知:如图,⊙Ol与⊙O2相交于A、B两点,C为⊙Ol上一点,AC交⊙O2于D,过B作直线EF交⊙Ol、⊙O2于E、F.

求证:EC∥DF

证明:连结AB

∵在⊙O2中∠F=∠CAB,

在⊙Ol中∠CAB=∠E,

∴∠F=∠E,∴EC∥DF.

反思:在解有关相交两圆的问题时,常作出连心线、公共弦,或连结交点与圆心,从而把两圆半径,公共弦长的一半,圆心距集中到一个三角形中,运用三角形有关知识来解,或者结合相交弦定理,圆周角定理综合分析求解。

(四)小结

知识:相交两圆的性质:相交两圆的连心线垂直平分公共弦。该定理可以作为证明两线垂直或证明线段相等的依据。

能力与方法:①在解决两圆相交的问题中常常需要作出两圆的公共弦作为辅助线,使两圆中的角或线段建立联系,为证题创造条件,起到了“桥梁”作用;②圆的对称性的应用。

(五)作业 教材P152习题A组7、8、9题;B组1题。

探究活动

问题1:已知AB是⊙O的直径,点O1、O2、…、On在线段AB上,分别以O1、O2、…、On为圆心作圆,使⊙O1与⊙O内切,⊙O2与⊙O1外切,⊙O3与⊙O2外切,…,⊙On与⊙On-1外切且与⊙O内切。设⊙O的周长等于C,⊙O1、⊙O2、…、⊙On的周长分别为C1、C2、…、Cn.

(1)当n=2时,判断Cl+C2与C的大小关系;

(2)当n=3时,判断Cl+C2+ C3与C的大小关系;

(3)当n取大于3的任一自然数时,Cl十C2十…十Cn与C的大小关系怎样?证明你的结论。

示:假设⊙O、⊙O1、⊙O2、…、⊙On的半径分别为r、rl、r2、…、rn,通过周长计算,比较可得(1)Cl+C2=C;(2)Cl+C2+ C3=C;(3)Cl十C2十…十Cn=C.

问题2:有八个同等大小的圆形,其中七个有阴影的圆形都固定不动,第八个圆形,紧贴另外七个无滑动地滚动,当它绕完这些固定不动的圆形一周,本身将旋转了多少转?

提示:1、实验:用硬币作初步实验;结果硬币一共转了4转。

2、分析:当你把动圆无滑动地沿着

圆周长的直线上滚动时,这个动圆是转

转,但是,这个动圆是沿着弧线滚动,那么方才的说法就不正确了。在我们这个题目中,那动圆绕着相当于它的圆周长的

的弧线旋转的时候,一共走过的不是

转;而是

转,因此,它绕过六个这样的弧形的时,就转了

初中数学公开课优秀教案4

正多边形的有关计算

教学设计示例1

教学目标:

(1)会将正多边形的边长、半径、边心距和中心角、周长、面积等有关的计算问题转化为解直角三角形的问题;

(2)巩固学生解直角三角形的。能力,培养学生正确迅速的运算能力;

(3)通过正多边形有关计算公式的推导,激发学生探索和创新。

教学重点:

把正多边形的有关计算问题转化为解直角三角形的问题。

教学难点:

正确地将正多边形的有关计算问题转化为解直角三角形的问题解决、综合运用几何知识准确计算。

教学活动设计:

(一)创设情境、观察、分析、归纳结论

1、情境一:给出图形。

问题1:正n边形内角的规律。

观察:在图形中,应用以有的知识(多边形内角和定理,多边形的每个内角都相等)得出新结论。

教师**学生自主观察,学生回答。(正n边形的每个内角都等于

.)

2、情境二:给出图形。

问题2:每个图形的半径,分别将它们分割成什么样的三角形?它们有什么规律?

教师引导学生观察,学生回答。

观察:三角形的形状,三角形的个数。

归纳:正n边形的n条半径分正n边形为n个全等的等腰三角形。

3、情境三:给出图形。

问题3:作每个正多边形的边心距,又有什么规律?

观察、归纳:这些边心距又把这n个等腰三角形分成了个直角三角形,这些直角三角形也是全等的。

(二)定理、理解、应用:

1、定理: 正n边形的半径和边心距把正n边形分成2n 个全等的直角三角形。

2、理解:定理的实质是把正多边形的问题向直角三角形转化。

由于这些直角三角形的斜边都是正n边形的半径R,一条直角边是正n边形的边心距rn,另一条直角边是正n边形边长an的一半,一个锐角是正n边形中心角

的一半,即

,所以,根据上面定理就可以把正n边形的有关计算归结为解直角三角形问题。

3、应用:

例1、已知正六边形ABCDEF的半径为R,求这个正六边形的边长、周长P6和面积S6.

教师引导学生分析解题思路:

n=6

=30°,又半径为R

a6 、r6.

P6、S6.

学生完成解题过程,并关注学生解直角三角形的能力。

解:

作半径OA、OB;作OG⊥AB,垂足为G,得Rt△OGB. ∵∠GOB=

∴a6 =2·Rsin30°=R,

∴P6=6·a6=6R,

∵r6=Rcos30°=

, ∴

. 归纳:如果用Pn表示正n边形的周长,由例1可知,正n边形的面积S6=

Pn rn.

4、研究:(应用例1的方法进一步研究)

问题:已知圆的半径为R,求它的内接正三角形、正方形的边长、边心距及面积。

学生以小组进行研究,并初步归纳:

;

;

;

;

;

.

上述公式是运用解直角三角形的方法得到的。

通过上式六公式看出,只要给定两个条件,则正多边形就完全确定了。例如:(1)圆的半径或边数;(2)圆的半径和边心距;(3)边长及边心距,就可以确定正多边形的其它元素。

(三)小节

知识:定理、正三角形、正方形、正六边形的元素的计算问题。

思想:转化思想。

能力:解直角三角形的能力、计算能力;观察、分析、研究、归纳能力。

(四)作业

归纳正三角形、正方形、正六边形以及正n边形的有关计算公式。

教学设计示例2

教学目标:

(1)进一步研究正多边形的计算问题,解决实际应用问题;

(2)通过正十边形的边长a10与半径R的关系的证明,学习边计算边推理的数学方法;

(3)通过解决实际问题,培养学生简单的数学建模能力;

(4)培养学生用数学意识,渗透理论联系实际、实践论的观点。

教学重点:

应用正多边形的基本计算图解决实际应用问题及代数计算的证明方法。

教学难点:

例3的证明方法。

教学活动设计:

(一)知识回顾

(1)方法:运用将正多边形分割成三角形的方法,把正多边形有关计算转化为解直角三角形问题。

(2)知识:正三角形、正方形、正六边形的有关计算问题,正多边形的有关计算。

;

;

;

;

;

.

**学生填写教材P165练习中第2题的表格。

(二)正多边形的应用

多边形的有关计算方法是基本的几何计算知识之一,掌握这些知识,一方面可以为学生进一步学习打好基础,另一方面,这些知识在生产和生活中常常会用到,掌握后对学生参加实践活动具有实用意义。

例2、在一种联合收割机上,拨禾轮的侧面是正五边形,测得这个正五边形的边长是48cm,求它的半径R5和边心距r5(精确到).

解:设正五边形为ABCDE,它的中心为点O,连接OA,作OF⊥AB,垂足为F,则OA=R5,OF=r5,∠AOF=

. ∵AF=

(cm),∴R5=

(cm). r5=

(cm).

答:这个正多边形的半径约为,边心距约为

建议:①**学生,使学生主动参与教学;②渗透简单的数学建模思想和实际应用意识;③对与本题除解直角三角形知识外,还要主要学生的近似计算能力的培养。

以小组的学习形式,每个小组自己举一个实际生活中的例子加以研究,班内交流。

例3、已知:正十边形的半径为R,求证:它的边长

.

教师引导学生:

(1)∠AOB=?

(2)在△OAB中,∠A与∠B的度数?

(3)如果BM平分∠OBA交OA于M,你发现图形中相等的线段有哪些?你发现图中三角形有什么关系?

(4)已知半径为R,你能不通过解三角形的方法求出AB吗?怎么计算?

解:如图,设AB=a10.作∠OBA的平分线BM,交OA于点M,则

∠AOB=∠1=∠2=36°,∠OAB=∠3=72°.

∴OM=MB=AB= a10.

△ OAB∽△BAM

OA:AB=BA:AM,即R :a10= a10:(R- a10),整理,得

(取正根). 由例3的结论可得

.

回顾:黄金分割线段。AD2=DC·AC,也就是说点D将线段AC分为两部分,其中较长的线段AD是较小线段CD与全线段AC的比例中项。顶角36°角的等腰三角形的底边长是它腰长的黄金分割线段。

反思:解决方法。在推导a10与R关系时,辅助线角平分线是怎么想出来的。解决方法是复习等腰三角形的性质、判定及相似三角形的有关知识。

练习中练习1

(三)总结

(1)应用正多边形的有关计算解决实际问题;

(2)综合代数列方程的方法证明了

.

(四)作业

教材P173中8、9、10、11、12.

探究活动

已知下列图形分别为正方形、正五边形、正六边形,试计算角

的大小。

探究它们存在什么规律?你能证明吗?

(提示:

.)

相关推荐

热门文档

17 1247237