首页 > 学习资料 > 初中教案 >

七年级上册数学《整式的加减》教案通用4篇

网友发表时间 234629

【序言】由阿拉题库最美丽的网友为您整理分享的“七年级上册数学《整式的加减》教案通用4篇”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

整式的加减【第一篇】

第9课 整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程

一、复习

1、  叙述合并同类项法则。

2、  练习题:(用投影仪显示、学生完成)

3、  叙述去括号与添括号法则。

4、  练习题:(用投影仪显示、学生完成)

5、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1 (P166例1)(学生自学后,教师按以下提示点拔即可)

求单项式5x2y,-2 x2y,2xy2,-4xy2的和。

提示:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

练习:P167  1、2

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6)  (每个多项式要加括号)(口述:文字叙述的整式加减,对每个整式要添上括号)

=3x2-6x+5+4x2-7x-6        (去括号)

=7x2+x-1                 (合并同类项)

练习:P167  3

例3。(P166例3)(学生自学后,完成练习,教师矫正练习错误)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-( x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。(最好由学生归纳)

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

补:已知:A=5a2-2b2-3c2, B=-3a2+b2+2c2, 求2A-3B(视时间是否足够而定)

四、小结(用投影仪板演)

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业

1、               P169:A:1(3、4),3,5,6,7,8。B:1,2。  (可适当减少些)

整式的加减【第二篇】

教学内容    课本第66页至第68页。    教学目标    1.知识与技能    能运用运算律探究去括号法则,并且利用去括号法则将整式化简。    2.过程与方法    经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。    3.情感态度与价值观    培养学生主动探究、合作交流的意识,严谨治学的学习态度。    重、难点与关键    1.重点:去括号法则,准确应用法则将整式化简。    2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误。    3.关键:准确理解去括号法则。    教具准备    投影仪。    教学过程    一、新授    利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?    现在我们来看本章引言中的问题(3):    在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为()小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120()千米,因此,这段铁路全长为    100t+120()千米    ①    冻土地段与非冻土地段相差    100t-120()千米    ②    上面的式子①、②都带有括号,它们应如何化简?    思路点拨:教师引导,启发学生类比数的运算,利用分配律。学生练习、交流后,教师归纳:    利用分配律,可以去括号,合并同类项,得:    100t+120()=100t+120t+120×(-)=220t-60    100t-120()=100t-120t-120×(-)=-20t+60    我们知道,化简带有括号的整式,首先应先去括号。    上面两式去括号部分变形分别为:    +120()=+120t-60   ③    -120()=-120+60    ④    比较③、④两式,你能发现去括号时符号变化的规律吗?    思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:    如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;    如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。    特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).    利用分配律,可以将式子中的括号去掉,得:    +(x-3)=x-3   (括号没了,括号内的每一项都没有变号)    -(x-3)=-x+3  (括号没了,括号内的每一项都改变了符号)    去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项。    二、范例学习    例1.化简下列各式:    (1)8a+2b+(5a-b);  (2)(5a-3b)-3(a2-2b).    思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号。为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号。    解答过程按课本,可由学生口述,教师板书。    例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时。    (1)2小时后两船相距多远?    (2)2小时后甲船比乙船多航行多少千米?    教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路。    思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度。因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米。两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和。    解答过程按课本。    去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号。为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号。    三、巩固练习    1.课本第68页练习1、2题。    2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2. [5xy2]    思路点拨:一般地,先去小括号,再去中括号。    四、课堂小结    去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号。去括号规律可以简单记为“-”变“+”不变,要变全都变。当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项。    五、作业布置    1.课本第71页习题第2、3、5、8题。    2.选用课时作业设计。

第二课时作业设计    一、选择题:    1.下列各式化简正确的是(  ).      (2a-b+c)=-a-b+c        b.(a+b)-(-b+c)=a+2b+c      [5b-(2c-a)]=2a-5b+2c  (b+c)-d=a-b+c-d    2.下面去括号错误的是(  ).      (a-b+c)=a2-a+b-c        +a-2(3a-5)=5+a-6a+5      (3a2-2a)=3a-a2+ a     [(a2-(-b))=a3-a2-b    3.将多项式2ab-4a2-5ab+9a2的同类项分别结合在一起错误的是(  ).      a.(2ab-5ab)+(-4a2+9a)    b.(2ab-5ab)-(4a2-9a2)      c.(2ab-5ab)+(9a2-4a2)     d.(2ab-5ab)-(4a2+9a2)    二、化简下列各式:    (-a3+2a2)-(4a2-3a+1).    5.(4a2-3a+1)-3(-a3+2a2).    (a2-4a+3)-5(5a2-a+2).    [5x-2( x- )+2x2].    答案:    一、        二、4.-2a3+3a-1  +1  6.-22a2-7a-1  x-3.

整式的加减【第三篇】

第5课时教学内容: 教科书第64—66页,整式的加减:2.合并同类项。 教学目的和要求: 1.理解合并同类项的概念,掌握合并同类项的法则。 2.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识。 3.渗透分类和类比的思想方法。 4.在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益。 教学重点和难点: 重点:正确合并同类项。     难点:找出同类项并正确的合并。教学方法:分层次教学,讲授、练习相结合。 教学过程: 一、复习引入: 为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品。他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔。问: ①他们两次共买了多少本软面抄和多少支水笔? ②若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元? (知识的呈现过程尽量与学生已有的生活实际密切联系,从而能提高学生从事探索活动的投入程度和积极性,激发学生的求知欲。) 二、讲授新课: 1.合并同类项的定义: (学生讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所的结果都为(21x+25y)元。 由此可得:把多项式中的同类项合并成一项,叫做合并同类项。(板书:合并同类项。) 2.例题: 例1:找出多项式3x2y-4xy2-3+5x2y+2xy2+5种的同类项,并合并同类项。 解原式= 根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则: 把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。例2:下列各题合并同类项的结果对不对?若不对,请改正。 (1)2x2+3x2=5x4;  (2)3x+2y=5xy;  (3)7x2-3x2=4; (4)9a2b-9ba2=0。 (通过这一组题的训练,进一步熟悉法则。) 例3:合并下列多项式中的同类项: ①2a2b-3a2b+; ②a3-a2b+ab2+a2b-ab2+b3;③5(x+y)3-2(x-y)4-2(x+y)3+(y-x)4。 (用不同的记号标出各同类项,会减少运算错误,当然熟练后可以不再标出。其中第(3)题应把(x+y)、(x-y)看作一个整体,特别注意(x-y)2n=(y-x)2n,n为正整数。) 解:① 。 ② 。     ③原式=5(x+y)3-2(x-y)4-2(x+y)3+(x-y)4=3(x+y)3-(x-y)4。 例4:求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3。 解: ,当x=-3时,原式= 。 试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便? (两种方法。通过比较两种方法,使学生认识到,在求多项式的值时,常常先合并同类项,再求值,这样比较简便。) 6.课堂练习:课本p66:1,2,3。 三、课堂小结:①要牢记法则,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误。 ②从实际问题中类比概括得出合并同类项法则,并能运用法则,正确的合并同类项。四、课堂作业:     课本p71:1

《合并同类项》1.合并同类项的定义: 2.例:………             例:…………     ………………         …………………           …………………    ………………         …………………            …………………  学生练习:……  …………………    ………………      ………………… …………………  …………………   …………………     …………………板书设计:            教学后记:数学教学要紧密联系学生的生活实际,本节课从学生已有的知识和经验出发,从实际问题入手,引出合并同类项的概念。通过独立思考、讨论交流等方式归纳出合并同类项的法则,通过例题教学、练习等方式巩固相关知识,发展应用部分。教学中应激发学生主动参与的学习动机,培养学生思维的灵活性,体现分类、类比等数学思想方法。

整式的加减教学设计【第四篇】

教学目标:

通过类比数的运算律得出同类项的概念,掌握合并同类项法则,会对同类项进行合并,发展类比的数学思想方法。

教学重点:

合并 同类项的法则及应用。

教学难点:

正确判断同类项,并同类项。

教学过程:

一、情境诱导

前面我们已经学习了整式,现在我们来看本章引言中的这个实际问题怎么解决:

在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的倍 ,如果通过冻土地段需要t h,你能用含t的式子表示这段铁路的全长吗?(请列出算式)

得到:100t+120×即:100t+252t

对于100t+252t怎么计算呢?这就是今天要学习的内容(板书课题),为了解决这问题,请同学们先来按照探究提纲开始探究(要求:不会的同学可以请教,也可以看书)

二、探究指导(学生按提纲探究,老师先做必要的板书准备,再到学生中进行巡视指导,掌握学生情况,为展示归纳做准备。)

探究提纲:

1.填空:

(1)2t+52t=()t

(2)3x2+2x2=( ) x2

(3)3ab2-5ab2=( )ab2

(4)4xy+6xy=

2. 如果把上面每个算式左边的两个项叫同类项,你能总结出他的特征吗?你能说说出什么是同类项吗?

3. 仔细观察上面三个算式的从左到右的运算,你发现了什么规律,请用语言叙述你的规律。

三、展示归纳

1、抽有问题的学生逐题汇报,学生说教师板书。

2.发动学生进行评价、补充、完善,学生说老师改写,

3.教师最后揭示性质,并画龙点睛的强调。

四、变式练习(第1、2、3、4小题学生口答结果,并说出为什么;其它题先让学生独立完成,教师巡回指导,了解情况,可抽取有问题学生,汇报结果,老师板书,并请学生评价、完善,然后老师根据需要进行重点强调。)

1.说出两组同类项

2.下列各组是同类项的是()

A 2x3与3x2 B 12ax与8bx C x4与a4 D π与-3

3.下列各题计算的结果对不对?如果不对,指出错在哪里?

(1)3a+2b=5ab (2)5y2-2y2=3

(3)2ab-2ba=0 (4)3x2y-5xy2=-2x2y

4.–xmy与45 x3yn是同类项,则m=_______,n=______。

5.计算:

课本P65练习1.

6. 课本习题第1

五、课堂小结

通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(先请学生进行自主小结,再由老师概括总结,做必要的强调)

六、作业布置

课本习题第5、6题。

相关推荐

热门文档

17 234629