首页 > 学习资料 > 初中教案 >

初中数学有理数教案(精彩4篇)

网友发表时间 1794173

【阅读指引】阿拉题库网友为您分享整理的“初中数学有理数教案(精彩4篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

有理数教案【第一篇】

一、课题

有理数的除法

二、教学目标

1.使学生理解有理数倒数的意义;

2.使学生掌握有理数的除法法则,能够熟练地进行除法运算;

3.培养学生观察、归纳、概括及运算能力.

三、教学重点和难点

重点:有理数除法法则.

难点:(1)商的符号的确定.

(2)0不能作除数的理解.

四、教学手段

现代课堂教学手段

五、教学方法

启发式教学

六、教学过程

(一)、从学生原有认知结构提出问题

1.叙述有理数乘法法则.

2.叙述有理数乘法的运算律.

3.计算:

(1)3×(-2); (2)-3×5; (3)(-2)×(-5).

(二)、导入新课

因为3×(-2)=-6,所以3x=-6时,可以解得x=-2;

同样-3×5=-15,解简易方程-3x=-15,得x=5.

在找x的值时,就是求一个数乘以3等于-6;或者是找一个数,使它乘以-3等于-15.已知一个因数的积,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算.

(三)讲授新课

1.有埋数的倒数

0没有倒数,(0不能作除数,分母是0没有意义等概念在小学里是反复强调的.)

提问:怎样求一个数的倒数?

答:整数可以看成分母是1的分数,求分数的倒数是把这个数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分

数再求倒数.

什么性质

所以我们说:乘积为1的两个数互为倒数,这个定义对有理数仍然适用.

这里a≠0,同小学一样,在有理数范围内,0不能作除数,或者说0为分母时分数无意义.

2.有理数除法法则

利用有理数倒数的概念,我们进一步学习有理数除法.

因为(-2)×(-4)=8,所以8÷(-4)=-2.

由此,我们可以看出小学学过的除法法则仍适用于有理数除法,即

除以一个数等于乘以这个数的倒数.

0不能作除数.

例1 计算:

课堂练习

(1)写出下列各数的倒数:

(2)计算:

3.有理数除法的符号法则

观察上面的练习,引导学生总结出有理数除法的商的符号法则:

两数相除,同号得正,异号得负.

掌握符号法则,有的题就不必再将除数化成倒数再去乘了,可以确定符号后直接相除,这就是第二个有理数除法法则:

两数相除,同号得正,异号得负,并把绝对值相除.

0除以任何一个不为0的数,都得0.

≠0)。利用除法法则可以化简分数.

例2 化简下列分数:

例3 计算:

(4)(-7)÷3-20÷3(-7-20)÷3=(-27)÷3=-9.

(四)、小结

1.指导学生看书,重点是除法法则.

2.引导学生归纳有理数除法的一般步骤:(1)确定商的符号;(2)把除数化为它的倒数;(3)利用乘法计算结果.

七、练习设计

习题 1、2、3、4、5、6题

八、板书设计

§有理数的除法

(一)知识回顾 (三)例题解析 (五)课堂小结

例1、例2

(二)观察发现 (四)课堂练习 练习设计

,七年级数学上册北师大版有理数的除法教案

初一上册数学《有理数》教案【第二篇】

教学目标:

知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。

过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。

情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。

教学重点:掌握有理数的两种分类方法

教学难点:会把所给的各数填入它所属于的集合里

教学方法:问题引导法

学习方法:自主探究法

一、情境诱导

在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。

1、有下面这些数:15,-1/9,-5,2/15,-13/8,,-,-80,0,123,

(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?

(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?

把整数和分数起个名字叫有理数。(点题并板书课题)

二、自学指导

学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

附:自学提纲:

1.___________、____、_______统称为整数,

2._______和_________统称为分数

3.____ ______统称为有理数,

4、在1、2、3、0、-1、-2、-3、1/2、、-、-5/2中,整数: 、分数: ;正整数: 、负整数: 、正分数: 、负分数:。

三、展示归纳

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

四、变式练习

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

1、整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.

2、判断下列说法是否正确,并说明理由。

(1)有理数包括有整数和分数。

(2)不是有理数。

(3)0不是有理数。

(4)一个有理数不是正数就是负数。

(5)一个有理数不是整数就是分数

3、所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):

杨桂花:有理数教学设计

正数集合:{ …} 负数集合:{ …}

正整数集合:{ … } 负分数集合:{ …}

4、下列说法正确的是( )

是最小的正整数

是最小的有理数

既不是整数也不是分数

D. 0既不是正数也不是负数

5、下列说法正确的有( )

(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数

五、总结与反思:通过本节课的学习,你有什么收获?

六、作业:必做题:课本14页:1、9题

有理数优秀教案【第三篇】

学习目标:

1.理解有理数加法意义

2.掌握有 理数加法法则,会正确进行有理数加法运算

3.经历探究有理数有理数加法法则过程,学会与他人交流合作

学习重点:和 的符号的确定

学习难点:异号两数相加的法则

学法指导:

在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。

学习过程

(一)课前学习导引:

1. 如果向东走5米记作+5米,那么向西走3米记作

2. 比较 大小:2 -3,-5 - 7,4

3. 已知a=-5,b=+ 3, 则︱a ︳+︱ b︱=

(二)课堂学习导引

正有理数及0的加法运算,小学已经学过,然而实 际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它 们的和叫做 净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。于是

(1)红队的净胜球数为 4+(-2) ,

(2)蓝队的净胜球数为 1+(-1) 。

这里用到正数和负数的加法。那么,怎样计算4+(-2),1+(-1)的结果呢?

现在让我们借助数轴来讨论有理数的加法:某人从一点出 发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示

①先向东走了5米 ,再向东走3米 ,结果怎样?可以 表示为

②先向西走了5米,再向西走了3米,结果如何?可以表示为:

③先向东走了5米,再向西走了3米,结果呢?可以表示为:

④先向西走了5米,再向东走了3米,结果呢?可以表示为:

⑤先向东走了5米,再向西走了5米,结果呢?可以表示为:

⑥先向西走5米,再向东走5米,结果呢?可以表示为:

从以上几个算式中总结有理数加法法则:

(1)、同号的两数相加,取 的符号,并把 相加。

(2).绝对值不相等的异号两数相加, 取 的加数 的 符号, 并用较大的绝对值 较小的绝对值。 互为相反数的 两个数相加得 .

(3)、一个数同0相加,仍得 。

例1 计算(能完成吗,先自己动动手吧!)

(-3)+( -9) (2)(-)+

例2 足球循环赛中,

红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算 各队的 净胜球数。

解:每个队的进球总数记为正数,失球总数记为负数,这 两数的和为这队的净胜球数。

三场比赛中,

红队共进4球,失2球,净胜球数为(+4)+(2)=+(42 )= ;

黄队共进2球,失4球,净胜球数为(+2)+(4)= (4

蓝队共进( )球,失( )球, 净胜球数为 = 。

(三)课堂检测导引:

(1)(-3)+(-5)= ; (2)3+(-5)= ;

(3)5+(-3)= ; (4)7+(-7)= ;

(5)8+(-1)= ; (6)(-8)+1 = ;

(7)(-6)+0 = ; (8)0+(-2) = ;

(四)课堂学习小结

1.本节课中你学到了什么知识?

2.你觉得有理数加法比较难掌握的是哪里?

(五)学后拓延导引

1.计算:

(1)(-13)+(-18); (2)20+(-14);

(3) + ; (4) + (-);

(5) (- )+(- ); (6)1 +(- );

(7)(-)+ 6 ; (8) +(- ).

2.判断题:

(1)两个负数的和一定是负数; ( )

(2)绝对值相等的两个数的和等于零; ( )

(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数; ( )

(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。 ( )

3.当a = -,b = 时,求a+b和a+(-b)的。值。

初中数学有理数教案【第四篇】

一、课题

略。

二、教学目标

1.结合具体例子,体会数学与我们的成长密切相关。

2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。

3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。

4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。

三、教学重点和难点

重点

难点

1.结合具体例子,体会数学与我们的成长密切相关。

2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。

结合具体例子,体会数学与我们的成长密切相关。

四、教学手段

现代课堂教学手段

教学准备

教师准备

录音机、投影仪、剪刀、长方形纸片。

学生准备

预习、剪刀、长方形纸片

五、教学方法

启发式教学

六、教学过程设计

一、导入

教师活动

学生活动

展示图片并播放录音。

宇宙之大(海王星、流星雨),粒子之微(铍原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表),大千世界,天上人间,无处不有数学的贡献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。

观察图片,听录音。

二、板书课题。

三、导学

教师活动

学生活动

1.现在让我们进入时空的隧道,回忆我们的成长历程:

出生——学前——小学(板书),我们每一天都在接触数学并不断学习它,相信吗?不妨大家从不同阶段来举出一些我们身边或亲身经历的例子,试一试。(积极鼓励)

(师、生共同讨论交流,从具体事例中分析并找出数学信息。)

2.进入小学,我们正式开始学习数学,回忆一下,在小学阶段我们学习的主要数学知识有哪些?

3.指定若干名学生口答,师生共同系统归纳:

数与式:认识、计算、方程、解应用题;

图形:图形的认识、图形的画法、图形的计算;

统计知识。

4.数学知识的学习,不仅开阔了我们的视野,而且改变了我们的思维方式,使我们变得更加聪明了。发挥一下我们的聪明才智,尝试解决下面的2个问题:

(1)投影或小黑板展示下列问题:

①计算并观察下列三组算式:

②已知25×25=625,则24×26=(不要计算)

③你能举出一个类似的例子吗?

④更一般地,若a×a=m,则(a+1)(a-1)= 。

(老师点评、表扬)

(2)投影或小黑板展示教材第13页第4题。

通过刚才的解题,可以看出同学们都非常聪明,其实不仅我们每个人离不开数学,而且整个人类、整个社会也离不开数学,同学们课后可以阅读一下第1节第2点《人类离不开数学》,体会数学对促进人类社会发展的'重大作用。

布置作业:

(1)谈一谈你对数学的兴趣、学习 阿拉文库…数学的方法以及学习中存在的困难等;

(2)习题第2、4题。

1.回忆、交流、积极大胆发言。

2.回忆、交流。

3.观察、计算、思考、探索。

4.学生取出剪刀和长方形纸片,小组合作,动手尝试解决。

学生1

学生2

学生拼图(略)

七、练习设计

课堂基础练习

1、下列图形中,阴影部分的面积相等的是.

答案:A与B;C与D

2、三个连续奇数的和是21,它们的积为

答案:315

3、计算:7+27+377+4777

答案:5188

课后延伸练习

1、猜谜语(各打数学中常用字)

千人分在北上下;②1人立在口上边

答案:①乘;②倍

2、在与伙伴玩“24点”游戏中,使数1,5,5,5通过运算得24?

答案:[5-(1÷5)]×5

3、只允许添两个“一”、一个“十”和一个括号,不改变数字顺序,把1,2,3,4,5,6,7,8,9这九个数字连成结果为100的算式:

1 2 3 4 5 6 7 8 9 =100

答案:123-(45+67-89)=100

4、把长方形剪去一个角,它可能是几边形?

答案:三边形,四边形,五边形.

5、有一个正方形池塘如图1-1-2,在它的四个角上有四棵大树,现在为了扩大池塘,要把池塘面积扩大一倍,但是,这四棵树不便搬动,也不能使它淹在水里,而且扩大后的池塘还是正方形,这该怎么办呢?

答案:

能力提高训练

18

19

答案:7个,边长从大到

小依次为11、8、

7、5、3

1、一个长方形,长19cm,宽18cm,如果把这个长方形分割成若干个边长为整数的小正方形,那么这些小正方形最少有多少个?如何分割?

2、在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的,再加上班上学生的,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?

答案:36

八、板书设计

(一)知识回顾(四)例题解析(六)课堂小结

(二)观察发现例1、例2

(三)解方程(五)课堂练习练习设计

九、教学后记

相关推荐

热门文档

17 1794173