数学必修三知识点总结【精选4篇】
【导言】此例“数学必修三知识点总结【精选4篇】”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
学生寒假托管服务方案【第一篇】
为满足广大学生和家长对小学生寒假托管服务的迫切需求,解决学生寒假“看护难”的问题,引导和帮助学生度过一个安全,快乐,有意义的假期,结合我校实际,特制订xx市实验小学学生寒假托管服务实施方案:
一、实施原则
1.统筹安排
学校结合实际积极引导和鼓励教师志愿参与学生寒假托管服务,统筹合理安排教师志愿参与托管服务的时间,保障教师权益。因地制宜设计寒假托管服务项目,组织实施并对服务内容、质量进行管理。
2.自愿参与
寒假托管服务坚持学生自愿参加,主要面向确有需求的家庭和学生,并由家长学生自愿选择参加,不得强制要求学生参加。x月13日之前有出省情况的需要签订安全防疫承诺书。学校充分征求家长意见,主动向家长告知服务方式、服务内容、安全保障措施等,建立家长申请、班级审核、学校统实施的工作机制。
3.公益普惠
坚持公益性、普惠性、非营利性原则,充分利用学校资源,为学生提供活动场地、设备仪器、教育资源等服务。
二、组织实施
1.服务对象
寒假托管服务对象是有服务需求的本校在读学生。
2.服务时间
学校服务时间是x月19日至x月13日(双休日除外),每天时间:上午8:30-11:30;下午:14:30-17:00。
3.服务内容
以看护为主,开放教室、爱阅馆、运动场等场所,合理提供一些适合学生活动等方面的服务。不进行集体补课,不讲授新课。
三、保障措施
1.加强组织领导
学校成立托管服务领导小组,负责托管服务的管理、指导、监督等各项工作。领导小组分工如下:
组长:xx全面负责寒假托管服务工作的组织实施
成员:xx——课程安排
xx——教师管理
xx——学生管理
2.统筹安排师资
学校结合实际,原则上以学校在职教职工为主承担寒假托管服务工作,尽可能满足学生、家长的。不同需求。
3.落实安全保障
学校把安全放在首位,落实安全责任,完善安全管理制度和应急预案,加强安全卫生意识教育,切实消除安全隐患,确保学生人身安全。学校坚持做好疫情防控工作,对有出行记录并想参加托管服务的学生要求签订安全防疫承诺书。建立校园伤害风险赔偿的多方共担机制,健全学生的医保、校园伤害责任保险、为寒假托管服务提供保障。
四、课程安排
略。
数学必修三知识点总结【第二篇】
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
数学必修三学习方法
首先:课前复习。就是上课前花两三分钟把书本本节课要学的内容看一遍。仅仅是看一遍,过一遍。这样上课老师讲自己不但可以跟上老师节奏还可以再次巩固。其余不要干其他多余的事。
其次:上课时候一定要专心听讲,如果觉得老师这里讲得都懂了的话可以自己翻书看后面的内容。做习题的时候一定要一道一道往过做,不要越题做。因为对于课本来说这些都是基础,只有基础完全掌握后才能做难题。上课过程中第一次接触到的知识点概念等,一定一定要当堂背过。不然以后很难背过,不要妄想考前抱佛教再背
另外要把笔记记准确,知道自己需要记什么不需要记什么,憋一个劲地往书上搬。字不要求整齐,自己能看懂就行。课本资料书上有例题,多看多记方法。先看课本基础,在看资料书上着重的。例题的方法一定一定要理解,不要去背!接着下课再看笔记,只是略微巩固记住。
数学必修三学习技巧
重视改错错不重犯。
一定要重视改错的这份工作,做到错不再犯。初中数学教学中采用的方法是告诉学生所有可能的错误,只要有一个人犯了错误,就应该提出,以便所有的学生都能从中吸取教训。这叫“一人有病,全体吃药。”
高中数学课没有那么多时间,除了一小部分那几种典型错,其它错误,不能一一顾及。只能谁有病,谁吃药。如果学生“生病”而忘了吃药,那么没有人会一次又一次地提醒他要注意什么。如果能及时改错,那么错误就可能转变为财富,成为预防针。但是,如果不能及时改错,这个错误就将形成一处“地雷”,迟早要惹祸。
有的学生认为,自己考试成绩上不去,是因为太粗心。其实,原因并非如此。打一个比方。比如说,学习开汽车。右脚下面,往左踩,是踩刹车。往右踩,是踩油门。其机械原理,设计原因,操作规程都可以讲的清清楚楚。如果初学驾驶的人真正掌握了这一套,请问,可以同意他开车上路吗?恐怕他知道他还缺乏练习。一两次你能正确地完成任务,但这并不意味着你永远不会犯错误。练习的数量不够,才是学生出错的真正原因。大家一定要看到,如果自己的基础知识漏洞百出、隐患无穷,那么,今后的数学将是难以学好的。
数学必修三知识点总结【第三篇】
一。随机事件的概率及概率的意义
1、基本概念:
(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;
(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;
(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率
二。概率的基本性质
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;
(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;
(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以
P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性质:
1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;
2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);
3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;
(2)事件A不发生且事件B发生;
(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;
(1)事件A发生B不发生;
(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。三。古典概型及随机数的产生
(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
(2)古典概型的解题步骤;①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用公式P(A)=
四。几何概型及均匀随机数的产生
基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;
(2)几何概型的概率公式:P(A)=;
(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;
2)每个基本事件出现的可能性相等
数学必修三知识点总结【第四篇】
1算法初步
秦九韶算法:通过一次式的反复计算逐步得出高次多项式的值,对于一个n
次多项式,只要作n次乘法和n次加法即可。表达式如下:
anxnan1xn1...a1anxan1xan2x...xa2xa1例
题:秦九韶算法计算多项式
3x64x55x46x37x28x1,当时,
需要做几次加法和乘法运算?答案:6,6
即:3x4x5x6x7x8x1
理解算法的含义:一般而言,对于一类问题的机械的、统一的求解方法称为算法,
其意义具有广泛的含义,如:广播操图解是广播操的算法,歌谱是一首歌的算法,空调说明
书是空调使用的算法…(algorithm)
1.描述算法有三种方式:自然语言,流程图,程序设计语言(本书指伪代码).2.算法的特征:
①有限性:算法执行的步骤总是有限的,不能无休止的进行下去
②确定性:算法的每一步操作内容和顺序必须含义确切,而且必须有输出,输出可
以是一个或多个。没有输出的算法是无意义的。
③可行性:算法的每一步都必须是可执行的,即每一步都可以通过手工或者机器在
一定时间内可以完成,在时间上有一个合理的限度
3.算法含有两大要素:①操作:算术运算,逻辑运算,函数运算,关系运算等②
控制结构:顺序结构,选择结构,循环结构
流程图:(flowchart):是用一些规定的图形、连线及简单的文字说明表示算法及
程序结构的一种图形程序,它直观、清晰、易懂,便于检查及修改。
注意:1.画流程图的时候一定要清晰,用铅笔和直尺画,要养成有开始和结束的好习惯
2.拿不准的时候可以先根据结构特点画出大致的流程,反过来再检查,比如:遇到判断框时,往往临界的范围或者条件不好确定,就先给出一个临界条件,画好大致流程,然后检查这个条件是否正确,再考虑是否取等号的问题,这时候也就可以有几种书写方法了。
3.在输出结果时,如果有多个输出,一定要用流程线把所有的输出总结到一起,一起终结到结束框。
算法结构:顺序结构,选择结构,循环结构AA
pAYNNppY
BABYN
直到型循环当型循
环
Ⅰ.顺序结构(sequencestructure):是一种最简单最基本的结构它不存在条件判断、
控制转移和重复执行的操作,一个顺序结构的各部分是按照语句出现的先后顺序执行
的。
Ⅱ.选择结构(selectionstructure):或者称为分支结构。其中的判断框,书写时主要
是注意临界条件的确定。它有一个入口,两个出口,执行时只能执行一个语句,不
能同时执行,其中的A,B两语句可以有一个为空,既不执行任何操作,只是表明在某条件成立时,执行某语句,至于不成立时,不执行该语句,也不执行其它语句。
Ⅲ.循环结构(cyclestructure):它用来解决现实生活中的重复操作问题,分直到型(until)
和当型(while)两种结构(见上图)。当事先不知道是否至少执行一次循环体时(即不知道循环次数时)用当型循环。
基本算法语句:本书中指的是伪代码(pseudocode),且是使用BASIC
语言编写的,是介于自然语言和机器语言之间的文字和符号,是表达算法的简单而实用的好方法。伪代码没有统一的格式,只要书写清楚,易于理解即可,但也要注意符号要相对统一,避免引起混淆。如:赋值语句中可以用xy,也可以用xy;表示两变量相乘时可以用“*”,也可以用“”Ⅰ.赋值语句(assignmentstatement):用表示,如:xy,表示将y的值
赋给x,其中x是一个变量,y是一个与x同类型的变量或者表达式。
一般格式:“变量表达式”,有时在伪代码的书写时也可以用“xy”,
但此时的“=”不是数学运算中的等号,而应理解为一个赋值号。注:1.赋值号左边只能是变量,不能是常数或者表达式,右边可以是常数或者表达式。“=”具有计算功能。如:3=a,b+6=a,都是错误的,而a=3*51,a=2a+3
都是正确的。2.一个赋值语句一次只能给一个变量赋值。如:a=b=c=2,a,b,
c=2都是错误的,而a=3是正确的
例题:将x和y的值交换
pxpxxyxy,同样的如果交换三个变量x,y,z的值:
yzypzpⅡ.输入语句(inputstatement):Reada,b表示输入的数一次送给a,b
输出语句(outstatement):Printx,y表示一次输出运算结果
x,y
注:1.支持多个输入和输出,但是中间要用逗号隔开!语句输入的只能是变量而不是表达式语句不能起赋值语句,意旨不能在Print语句中用“=”语句可以输出常量和表达式的值。5.有多个语句在一行书写时用“;”
隔开。
例题:当x等于5时,Print“x=”;x在屏幕上输出的结果是x=5Ⅲ.条件语句(conditionalstatement):
1.行If语句:IfAThenB注:没有EndIf2.块If语句:注:①不要忘记结束语句EndIf,当有If语句嵌套使
用时,有几个If,就必须要有几个EndIf②.ElseIf是对上一个条件的否定,即已经不属于上面的条件,另外ElseIf后面也要有EndIf③注意每个条件的临界性,即某个值是属于上一个条件里,还是属于下一个条件。④为了使得书写清晰易懂,应缩进书写。格式如下:
IfAThenBElseCEndIf例题:用条件语句写出求三个数种最大数的一个算法。
Reada,b,cReada,b,cIfa≥bThenIfa≥banda≥cThenIfa≥cThenPrintaPrintaElseIfb≥cThenElse或者PrintbPrintcElseEndIfPrintcElseEndIfIfb≥cThen
Printb
Else注:1.同样的你可以写出求三个数中最小的数。Printc2.也可以类似的求出四个数中最小、大的
数EndIfIfEnd
IfAThenBElseIfCThenDEndIfⅣ.循环语句(cyclestatement):当事先知道循环次数时用For循环,即使是N次也是已知次数的循环当循环次数不确定时用While循环Do循环有两种表达形式,与循环结构的两种循环相对应。WhileAForIFrom初值to终值Step步长…
…EndForFor循环EndWhileWhile循环
DoWhilepDo……Loop当型Do循环LoopUntilp直到型Do循环说明:循环是前测试型的,即满足什么条件才进入循环,其实质是当型循环,一般在解决有关问题时,可以写成While循环,较为简单,因为它的条件相对好判断。2.凡是能用While循环书写的循环都能用For循环书写循环和Do循环可以相互转化循环的两种形式也可以相互转化,转化时条件要相应变化5.注意临界条
件的判定。
135...99的一个算法。(见课本P21)例题:设计计算S1S1ForIFrom3To99Step2SSIEndForPrintS
I1WhileI97II2SSIEndWhilePrintS
S1I1WhileI99SSIII2EndWhilePrintS
S1I1DoSSIII2LoopUntilI100(或者I99)PrintSS1I1DoII2
SSILoopUntilI99PrintS
S1I1DoWhileI99(或者I100)SSIII2LoopPrintS
S1I1DoWhileI97(或者I99)II2
SSILoopPrintS
颜老师友情提醒:1.一定要看清题意,看题目让你干什么,有的只要写出算法,有的只要求写出伪代码,而有的题目则是既写出算法画出流程还要写出伪代码。
2.在具体做题时,可能好多的同学感觉先画流程图较为简单,但也有的算法伪代码比较好写,你也可以在草稿纸上按照你自己的思路先做出来,然后根据题目要求作答。一般是先写算法,后画流程图,最后写伪代码。
3.书写程序时一定要规范化,使用统一的符号,最好与教材一致,由于是新教材的原因,再加上各种版本,可能同学会看到各种参考书上的书写格式不一样,而且有时还会碰到我们没有见过的语言,希望大家能以课本为依据,不要被铺天盖地的资料所淹没!