考研数学各部分知识点总结精编4篇
【导言】此例“考研数学各部分知识点总结精编4篇”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
考研数学高分之概率知识点总结【第一篇】
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ?
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
考研数学知识点梳理【第二篇】
考研数学知识点梳理
高数第一章“函数极限和连续”的重点就是不定式的极限,同学们要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判断连续性的方法。总之针对这种考试重点知识点,必须充分把握。
对于导数和微分,其实重点不是给一个函数考导数,而重点是导数的定义,也就是抽象函数的可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,总而言之看上不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学1里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。一阶微分方程,还有无穷级数,无穷级数的求和,主要是间接的展开法。
以上为高数中常考到的重要知识点。需要提醒大家的是,数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的。解题能力,做到面对任何试题都能有条不紊地分析和计算。
同学们在学习的过程中一定要认清一点:题等同于做题。看由于时间原因,很多人只是匆匆忙忙地看书而不动手练习,造成眼高手低。数学是一门严谨的学科,容不得半点纰漏,在我们还没有建立起完备的知识结构之前,一带而过的复习必然会难以把握题目中的重点,忽略精妙之处。况且,通过动手练习,我们还能规范答题模式,提高解题和运算的熟练程度,要知道3个小时那么大的题量,本身就是对计算能力和熟练程度的考查,而且现在的阅卷都是分步给分的,怎么作答有效果,这些都要通过自己不断的练习去体会。
大学网考研频道。考研数学知识点总结【第三篇】
考研数学知识点
第一章 行列式
1、行列式的定义
2、行列式的性质
3、特殊行列式的值
4、行列式展开定理
5、抽象行列式的计算
第二章 矩阵
1、矩阵的定义及线性运算
2、乘法
3、矩阵方幂
4、转置
5、逆矩阵的概念和性质
6、伴随矩阵
7、分块矩阵及其运算
8、矩阵的初等变换与初等矩阵
9、矩阵的等价
10、矩阵的秩
第三章 向量
1、向量的概念及其运算
2、向量的线性组合与线性表出
3、等价向量组
4、向量组的线性相关与线性无关
5、极大线性无关组与向量组的秩
6、内积与施密特正交化
7、n维向量空间(数学一)
第四章 线性方程组
1、线性方程组的克莱姆法则
2、齐次线性方程组有非零解的判定条件
3、非齐次线性方程组有解的判定条件
4、线性方程组解的结构
第五章 矩阵的特征值和特征向量
1、矩阵的特征值和特征向量的概念和性质
2、相似矩阵的概念及性质
3、矩阵的相似对角化
4、实对称矩阵的特征值、特征向量及其相似对角矩阵
第六章 二次型
1、二次型及其矩阵表示
2、合同变换与合同矩阵
3、二次型的秩
4、二次型的标准型和规范型
5、惯性定理
6、用正交变换和配方法化二次型为标准型
7、正定二次型及其判定
考研数学复习之拿高分方法
一、理性分析三个组成部分,各个击破
我们知道数学整个试卷的组成部分是:高数82分+线代34分+概率论34分;很明显微积分占了绝大部分;另外概率论里面很多题目要用到微积分的工具,实际上微积分的分数比82分要高,应该是能到100分左右。所以同学们在前期复习的时候一定要把微积分的基础打扎实;线性代数再难,毕竟内容不多。而且矩阵、向量、线性方程组、特征根与特征值、二次型本质思想都是一致的。用来用去的基本工具就是对矩阵做初等变换,求线性方程组解的结构,线代难是难在每个部分的基本思想都是一样的,但却是不同的概念。就导致章节之间的联系特别紧密,逻辑关系严密:比如线性相关无关的问题跟齐次方程组有没有非零解本质上是一模一样的;向量线性相关和无关的一些证明都可以用线性方程组的解去简单完成;也就是因为知识点这种内在的极大相关性提高了线性代数的考试难度。但由于线性代数知识点本身不多,只要把每一部分都熟练到一定程度,深刻理解掌握,自然而然也就能掌握其中的联系和逻辑了。
第三部分的概率论很多基本概念我们在高中的时候其实已经接触到了,一些简单的事件概率的运算、基本概型我们也都早就学过。总体来说概率论是三个部分中最简单的。不但内容少,而且每年考的题型也都特别固定。这部分内容我真的认为完全可以用突击来完成的。综上所述:微积分是整个考研的难点、重点。必须脚踏实地把基础打扎实;线性代数是难点,这个用熟练程度和思考可以破;概率论,只要你前面的知识学的够扎实,就完全没问题。另外在复习过程中,不少同学问我,要不要同时看微积分、线性代数、概率论;这里我的建议是:合力于一点,各个击破!谦虚谨慎,不骄不躁。
二、聚焦精力、选好教辅
每年都有一个现象,就是在选教辅书上,经验贴里提到的,师兄师姐提到的,一切渠道提到的所谓比较好的资料,巴不得全买了,但是买回来后又有多少人能全部做完呢。这里我不得不提醒下:须知考研数学考的是深度,而不是广度;我一直认为有三套书就足够了:
(一)教材,高数同济版的;线代统计五版;概率论浙大四版;
但这里不得不提醒大家,这四本书如果全部看下来掌握透彻,是需要很大时间和精力的;里面很多东西是所不考的,即使大纲里有。其实在复习的时候,很多同学把过多的精力,放在了那些不考,而且比较偏的题目上。就会导致大量的精力浪费。为此,我在教授数学中,就会提前给一份预习大纲,哪些考哪些不考;课后习题哪些做,哪些不做。从而能让大家精力聚焦。
(二)真题
不管怎么说,每一本习题里都参照了不少真题原型,甚至直接就是真题。真题的价值不必多说。但是每个同学对待的也很简单,只要做对了,就pass掉了。不回头去想你的做法或者你的思维是否符合命题人的要求。关于真题,对于比较好的典型题做5遍左右是比较合适的。对一些很常规的题,可以2-3遍就可以了。总之一定要深刻研究真题,让真题的价值发挥到最大。我忠告:市面上教辅书很多。我认为只要你选择大家公认的,把其价值发挥到大,认真去研究就足够了。不要人云亦云,购买过多的教辅书,导致自己精力分散,反而没有达到考研要求的深度和难度。
三、掌握正确的复习方法:杀人诛心
在复习数学时,确实每个人都有自己的想法,但是切记你怎么想不重要,关键是命题人怎么想。尤其是在做题的时候,千万不要简单地以能不能做出来为标准。一定要去分析背后所用的知识点以及考试逻辑。最后一定要问自己,这种方法是不是命题人想我用的方法。有哪些不足,有哪些忽略的细节,一定要好好审视。另外数学考试特点:学会思考而不是学会做题,但是在我们对一道题足够熟悉前,是很难产生想法的;所以在整个复习过程中,我一直要求学生:先熟悉,然后一定要经过自己的思考才能真正把这道题变成自己的,才能做到举一反三,以不变应万变。另外同学在做题的时候容易出现两个误区:
1、上来就动手,做过真题的同学就会发现,很多题目的设置是很有技巧的;这个技巧不是那种投机取巧,是需要你对知识点足够熟悉,需要你思考下才能想出来的。我记得这几年考试,很多10、11分的答题,我整个做出来都不到一分钟。当然很多同学可能不相信,在课堂上我也都亲自展现给同学们。不是说我厉害,而是当你熟练到一定程度的时候,就会跟命题人心有灵犀一点通了。所以做题的时候一定要:一看二想三动手。
2、刻意去记一些巧方法,考研数学中,我一直认为最好的方法绝对不是投机取巧,而是自然而然的方法,比如费马引理可能不会直接考到,但是它的证明你运用的思想和思维都是考研中必须要用到的。所以必须认真掌握其证明。
考研数学复习指南
1.思考着去做题,去总结
很多学生都有这样的困惑,做了很多题但不会的题还是很多,最可气的就是很多题明明做过,但是再遇到还是不会做!这就是很多同学存在的通病,不求甚解。总以为不会做了,看看答案就会了,并不会认真的思考为什么不会,解题技巧是什么,和它同类型的题我能不能会做等等。其实,这些都是很重要的,提醒大家要学着思考,学着“记忆”,最重要是要会举一反三,这样,我们才能脱离题海的浮沉,能够做到有效做题,高效提升!
2.侧重基础,培养逆向思维
很多时候,备考者会陷入盲目的题海中,这也是很多考生对数学感到头痛的原因所在。其实在前期复习知识点的时候,就应该把定义、定理的推导作为一个重点内容,重视推导和例题中的方法与技巧,认真分析这些方法,将它们套用到相应的练习题中,比做大量的重复练习要高效得多。
同时,思维习惯大大影响着学习效果。当进入考研数学复习备考的时候,大多数人继承了以往学习的习惯,思维也基本上定型了,也就是进入了定势思维。习惯性思考方式在一方面有优势,另一方面也制约着学习成绩的提高,我们现在要做的就是打破惯性思维!
3.做题有始有终,提高计算能力
数学不等于做题,但是不可避免的是学好数学一定要做题,那么如何做题?我们说基础的扎实巩固是根本,再这个基础上进行做题。同时,提醒大家的是复习一定要养成一个好的习惯,拿到的数学题一定要有始有终把它算出来,这是一种计算能力的训练,尤()其是计算量大的时候,如果没有平常这样一个训练,在实际考试的时候在短时间内是很难心有余力也足的。
4.深入思考,善于总结
考试里不仅仅是考察我们基本概念、基本理论、基本方法的问题,还涉及到我们灵活运用知识的能力问题,所以仅仅是依靠教材很难把它这种考试命题的特点归纳总结出来,因此要了解考试,历年考试的真题作为准备去参加研究生考试的同学是必备的。
大家选真题的时候应该考虑到能不能通过真题的分析帮助我们真正的归纳总结这样一些题型出来,针对每一个问题我们应该如何去分析和讨论在分析讨论过程中间,有没有一些可能的变化情况,这些变化情况到现在为止,考到了哪一些,那一些就是我们下一步复习应该注意的,这样每一部分你都能够这样去归纳、总结或通过这种相关的辅导书帮助你归纳总结出来了,复习就更有针对性。
5.揣摩真题,把握方向
真题的作用是不容忽视的,经过十几年的考试,相当多的题目模式已经定了下来,很多考研题目都是类似的。考研真题经过千锤百炼,在思想性上有较高的参考价值,需要多加揣摩。尤其是近两年的考题,反映了命题者出题的方式和思路,更要注意。所以,同学们一定要把真题重视起来!
考研数学大纲线性代数重要知识点总结【第四篇】
20考研数学大纲线性代数重要知识点总结
年考研数学大纲与相比,没有任何变化。近5年的数学大纲保持稳定,相对应的真题的题型与难度也是比较稳定的。因此对于线性代数这门考试科目,建议广大学子抓住重点难点,把基础知识“点”串联成“面”,再配以典型题目构架成完善的知识“体”,这样才能做到在考研这一战场上于线代阵中将分数收入囊中而丝毫不费吹灰之力!
下面某教育机构陈老师结合最新的2014考研数学大纲,针对线性代数的重要知识点给大家做一下总结:
一、行列式与矩阵
行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。
行列式的核心内容是求行列式――具体行列式的计算和抽象行列式的计算。其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的比较综合的题。
矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵相关的重要公式、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。
二、向量与线性方程组
向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
这部分的重要考点一是线性方程组所具有的两种形式――矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。
(1)齐次线性方程组与向量线性相关、无关的联系
齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立――印证了向量部分的一条性质“零向量可由任何向量线性表示”。
齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系――齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。
(2)齐次线性方程组的解与秩和极大无关组的联系
同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的`。秩的定义是“极大线性无关组中的向量个数”。经过 “秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。
(3)非齐次线性方程组与线性表示的联系
非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。
三、特征值与特征向量
相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容――既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。
本章知识要点如下:
1. 特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。
2. 相似矩阵及其性质,需要区分矩阵的相似、等价与合同:
3. 矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值;二是任意r重特征根对应有r个线性无关的特征向量。
4. 实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于以其特征值为对角元素的对角阵。
四、二次型
这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵 使其可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
本章知识要点如下:
1. 二次型及其矩阵表示。
2. 用正交变换化二次型为标准型。
3. 正负定二次型的判断与证明。