精编八年级数学教案人教版范例【优秀8篇】
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“精编八年级数学教案人教版范例【优秀8篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
优秀八年级数学教案人教版范文【第一篇】
2.将以上的性质定理,分别用命题形式叙述出来。
平行四边形的判定方法:
证明:两组对边分别相等的四边形是平行四边形。
已知:
求证:
学生交流:把你做的四边形和其他同学做的进行比较,看看是否都是平行四边形。
观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形。
优秀八年级数学教案人教版范文【第二篇】
1.经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.
2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.
将实际问题中的等量关系用分式方程表示。
找实际问题中的等量关系。
有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg。已知第一块试验田每公顷的.产量比第二块少3000kg,分别求这两块试验田每公顷的产量。你能找出这一问题中的所有等量关系吗?(分组交流)。
如果设第一块试验田每公顷的产量为kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________。
从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地所需的时间为h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程______________________。
学生分组探讨、交流,列出方程.
上面所得到的方程有什么共同特点?
分母中含有未知数的方程叫做分式方程。
分式方程与整式方程有什么区别?
(3)根据分式方程编一道应用题,然后同组交流,看谁编得好。
本节课你学到了哪些知识?有什么感想?
优秀八年级数学教案人教版范文【第三篇】
1、了解方差的定义和计算公式。
2、理解方差概念产生和形成过程。
3、会用方差计算公式比较两组数据波动大小。
重点:掌握方差产生的必要性和应用方差公式解决实际问题。
难点:理解方差公式。
(一)知识详解:
方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即。
给力小贴士:方差越小说明这组数据越稳定,波动性越低。
(二)自主检测小练习:
1、已知一组数据为、-、-4,则这组数据的方差为。
2、甲、乙两组数据如下:
甲组:1091181213107;
乙组:7891011121112。
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。
引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):
甲:;
乙:;
问:(1)哪种农作物的苗长较高(可以计算它们的平均数:=)?
(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)。
归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即用来表示。
(一)例题讲解:
金志强1013161412。
提示:先求平均数,然后使用公式计算方差。
(二)小试身手。
1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:
甲:。
乙:。
经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定去参加比赛。
1、求下列数据的众数:
(1)(2)。
方差公式:
提示:方差越小,说明这组数据越集中。波动性越小。
每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。
1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)。
如果根据这些成绩选拔一人参加比赛,你会选谁呢?
必做题:教材141页练习;选做题:练习册对应部分习题。
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!
优秀八年级数学教案人教版范文【第四篇】
一、教学目标:(1)熟练地进行同分母的分式加减法的运算.
(2)会把异分母的分式通分,转化成同分母的分式相加减.
二、重点、难点。
1.重点:熟练地进行异分母的分式加减法的运算.
2.难点:熟练地进行异分母的分式加减法的运算.
3.认知难点与突破方法。
进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.
异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式.
三、例、习题的意图分析。
问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.
第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.
(4)p21例7是一道物理的电路题,学生首先要有并联电路总电阻r与各支路电阻r1,r2,…,rn的关系为.若知道这个公式,就比较容易地用含有r1的式子表示r2,列出,下面的计算就是异分母的分式加法的运算了,得到,再利用倒数的概念得到r的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.
四、课堂堂引入。
1.出示p18问题3、问题4,教师引导学生列出答案.
引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?
3.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?
4.请同学们说出的最简公分母是什么?你能说出最简公分母的确定方法吗?
五、例题讲解。
(p20)例6.计算。
[分析]第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.
(补充)例.计算。
(1)。
[分析]第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.
解:
=
=
=
=
(2)。
[分析]第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.
解:
=
=
=
=
=
六、随堂练习。
计算。
(1)(2)。
(3)(4)。
七、课后练习。
计算。
(1)(2)。
(3)(4)。
八、答案:
四.(1)(2)(3)(4)1。
五.(1)(2)(3)1(4)。
优秀八年级数学教案人教版范文【第五篇】
2.将以上的性质定理,分别用命题形式叙述出来。
平行四边形的判定方法:
证明:两组对边分别相等的`四边形是平行四边形。
已知:
求证:
学生交流:把你做的四边形和其他同学做的进行比较,看看是否都是平行四边形。
观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形。
优秀八年级数学教案人教版范文【第六篇】
教学目标:
1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。
2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。
3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。
重点与难点:
重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。
难点:分析典型图案的设计意图。
疑点:在设计的图案中清晰地表现自己的设计意图。
教具学具准备:
提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。
教学过程设计:
1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)。
明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。
2、课本。
1欣赏课本75页图3—24的图案,并分析这个图案形成过程。
评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。
评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。
(二)课内练习。
(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。
(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。
(三)议一议。
生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。
(四)课时小结。
本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。
通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)。
进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。
优秀八年级数学教案人教版范文【第七篇】
人数1124225。
每人创得利润。
该公司每人所创年利润的平均数是多少万元?
年龄频数。
28≤x。
30≤x。
32≤x。
34≤x。
36≤x。
38≤x。
40≤x。
3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。
答案:1.约万元2.约29岁分贝。
优秀八年级数学教案人教版范文【第八篇】
多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。
二、自主学习,指向目标。
学习至此:请完成《学生用书》相应部分。
三、合作探究,达成目标。
多边形的定义及有关概念。
活动一:阅读教材p19。
小组讨论:结合具体图形说出多边形的边、内角、外角?
反思小结:多边形的定义及相关概念。
针对训练:见《学生用书》相应部分。
多边形的对角线。
活动二:(1)十边形的对角线有35条。
(2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。
反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。
小组讨论:如何灵活运用多边形对角线条数的规律解题?
针对训练:见《学生用书》相应部分。
正多边形的有关概念。
活动二:阅读教材p20。
小组讨论:判断一个多边形是否是正多边形的条件?
反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。
针对训练:见《学生用书》相应部分。
四、总结梳理,内化目标。
本节学习的数学知识是:
1、多边形、多边形的外角,多边形的对角线。
2、凸凹多边形的概念。
五、达标检测,反思目标。
1、下列叙述正确的是(d)。
a、每条边都相等的多边形是正多边形。
c、每个角都相等的多边形叫正多边形。
d、每条边、每个角都相等的多边形叫正多边形。
2、小学学过的下列图形中不可能是正多边形的是(d)。
a、三角形b。正方形c。四边形d。梯形。
3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。
4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。