精编八年级数学教案人教版最新8篇
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“精编八年级数学教案人教版最新8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
优秀八年级数学教案人教版【第一篇】
《图形的位似》这节课内容抽象而且学生以前没接触过,对学生来说接受起来难度很大,因此在教学的过程中,首先由手影这种学生较熟悉的形式让学生感受这种位置关系,然后通过动手操作的形式进一步探究位似图形的相关性质。在教学的过程中,为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识。探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新。
但是,这节课也存在很多不足之处:
1、学生动手操作、探究位似图形的过程都很顺利,但是很多小组在总结位似图形的性质时出项了语言表达的困难。
2、学生对于“每组对应点”认识还是不够,导致在判断位似图形时出现问题。
3、评价形式过于单调。一直是教师“很好”“太棒了”之类的评价,不能更好的调动学生的积极性。
4、小组合作时个别学生没有真正动起来。
5、没有让学生自己感受当位似图形不同时位似中心在位似图形的不同位置这一动态特点。
6、学生证明位似图形时证明过程还是不够严谨。
7、缺少了位似图形在生活中的应用。
改进措施:
1、通过小组合作交流的方式不断提高学生语言表达能力和逻辑思维能力。
2、强调“每组对应点”就是“所有的对应点”,在图上任意取几对对应点,通过连线,也经过位似中心,通过这样的动手实践,让学生印象更深刻。
3、通过各种途径评价学生,让自己的评价活泼多样。譬如:鼓励性眼神、肢体语言、同学们的掌声、定量评价、奖惩措施等等。
4、做好小组长的培训工作,让他们在小组中起到领导和协调的作用,抓住整个小组的节奏,让每个学生都参与进来,同时,多举行小组捆绑评价的活动,让后进的同学为了不拖后腿而不得不参与进来。
5、加强几何画板的学习和利用。信息技术与数学教学有机整合,有利于学生主动参与、乐于探究、勤于动手、动脑,体现了开放式的教育模式,开阔了学生的视野,推动了数学课堂现代化的发展。在这节课中,如果添加几何画板,那么位似中心和位似图形的五种位置关系就很形象的展现在我们面前。
6、加强学生几何题证明的条理性、严谨性的训练。培养学生的逻辑思维能力和语言的组织能力。
7、让学生在课下自己寻找我们生活中位似图形的影子,将数学和生活紧密联系起来。
在今后的教学中,我将牢记这些不足之处,不断改进,不断修炼自己,让自己的教学更进步,更成熟。
今天有关今天网友就为大家精心整理了(*),以便帮助大家更好的复习。
优秀八年级数学教案人教版【第二篇】
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.
2、会求一组数据的极差.
1、重点:会求一组数据的极差.
2、难点:本节课内容较容易接受,不存在难点、
从表中你能得到哪些信息?
比较两段时间气温的高低,求平均气温是一种常用的方法、
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的折线图、
观察一下,它们有区别吗?说说你观察得到的结果、
本节课在教材中没有相应的例题,教材p152习题分析。
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。
优秀八年级数学教案人教版【第三篇】
教学目标:
1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。
2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。
3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。
重点与难点:
重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。
难点:分析典型图案的设计意图。
疑点:在设计的图案中清晰地表现自己的设计意图。
教具学具准备:
提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。
教学过程设计:
1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)。
明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。
2、课本。
1欣赏课本75页图3—24的图案,并分析这个图案形成过程。
评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。
评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。
(二)课内练习。
(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。
(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。
(三)议一议。
生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。
(四)课时小结。
本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。
通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)。
进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。
优秀八年级数学教案人教版【第四篇】
会应用平方差公式进行因式分解,发展学生推理能力.
2.过程与方法。
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.
3.情感、态度与价值观。
培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.
重、难点与关键。
1.重点:利用平方差公式分解因式.
2.难点:领会因式分解的解题步骤和分解因式的彻底性.
3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.
教学方法。
采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.
教学过程。
一、观察探讨,体验新知。
问题牵引。
请同学们计算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
学生活动动笔计算出上面的两道题,并踊跃上台板演.
(1)(a+5)(a-5)=a2-52=a2-25;。
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
教师活动引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.
1.分解因式:a2-25;2.分解因式16m2-9n.
学生活动从逆向思维入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
教师活动引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).
二、范例学习,应用所学。
例1把下列各式分解因式:(投影显示或板书)。
(1)x2-9y2;(2)16x4-y4;。
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;。
(5)m2(16x-y)+n2(y-16x).
思路点拨在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.
教师活动启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.
学生活动分四人小组,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);。
(5)m2(16x-y)+n2(y-16x)。
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
优秀八年级数学教案人教版【第五篇】
本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.
本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.
本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.
优秀八年级数学教案人教版【第六篇】
1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用。
2.使学生理解判定定理与性质定理的`区别与联系。
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理。
1.通过“探索式试明法”开拓学生思路,发展学生思维能力。
2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力。
通过一题多解激发学生的学习兴趣。
通过学习,体会几何证明的方法美。
构造逆命题,分析探索证明,启发讲解。
1.教学重点:平行四边形的判定定理1、2、3的应用。
2.教学难点:综合应用判定定理和性质定理。
(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理).
优秀八年级数学教案人教版【第七篇】
严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
优秀八年级数学教案人教版【第八篇】
1、理解分式的基本性质。
2、会用分式的.基本性质将分式变形。
1、重点:理解分式的基本性质。
2、难点:灵活应用分式的基本性质将分式变形。
3、认知难点与突破方法。
教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
习题的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。
1、请同学们考虑:与相等吗?与相等吗?为什么?
2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3、提问分数的基本性质,让学生类比猜想出分式的基本性质。
p7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
p11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。
p11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。