首页 > 学习资料 > 作文大全 >

初一数学下册知识点总结归纳(精编5篇)

网友发表时间 294501

【阅读指引】阿拉题库网友为您分享整理的“初一数学下册知识点总结归纳(精编5篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

初一下册数学知识点总结1

初一下册知识点总结

1.同底数幂的乘法:am?an=am+n ,底数不变,指数相加。

2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。

3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。

4.零指数与负指数公式:

(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。

(2)有了负指数,可用科学记数法记录小于1的数,例如:=×10-5。

5.(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;

(2)完全平方公式:

① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的`2倍;

② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;

※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc

6.配方:

(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;

※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。

注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。

※(3)注意: 。

7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

多项式里,次数最高项的次数叫多项式的次数;

注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。

9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

10.合并同类项法则:系数相加,字母与字母的指数不变。

11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

平面几何部分

1、补角重要性质:同角或等角的补角相等。

余角重要性质:同角或等角的余角相等。

2、①直线公理:过两点有且只有一条直线。

线段公理:两点之间线段最短。

②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;

(2)直线外一点与直线上各点连结的所有线段中,垂线段最短。

比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米。

3、三角形的内角和等于180

三角形的一个外角等于与它不相邻的两个内角的和

三角形的一个外角大于与它不相邻的任何一个内角

4、n边形的对角线公式:

各个角都相等,各条边都相等的多边形叫做正多边形

5、n边形的内角和公式:180(n-2); 多边形的外角和等于360

6、判断三条线段能否组成三角形:

①a+b>c(a b为最短的两条线段)

②a-b

7、第三边取值范围:

a-b< c

8、对应周长取值范围:

若两边分别为a,b则周长的取值范围是 2a

如两边分别为5和7则周长的取值范围是 14

9、相关命题:

(1) 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

(2) 锐角三角形中最大的锐角的取值范围是60≤x<90 。最大锐角不小于60度。

(3)任意一个三角形两角平分线的夹角=90+第三角的一半。

(4) 钝角三角形有两条高在外部。

(5) 全等图形的大小(面积、周长)、形状都相同。

(6) 面积相等的两个三角形不一定是全等图形。

(7) 三角形具有稳定性。

(8) 角平分线到角的两边距离相等。

(9)有一个角是60的等腰三角形是等边三角形。

初一下册数学知识点总结2

单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的'指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式。

初一下册数学知识点总结3

⑴正数的立方根是正数。

⑵负数的立方根是负数。

⑶0的立方根是0.一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(cuberoot,也叫做三次方根)。如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。

立方和开立方运算,互为逆运算,初中历史。

互为相反数的`两个数的立方根也是互为相反数。

负数不能开平方,但能开立方。

立方根如何与其他数作比较?

⑴做这两个数的立方

⑵作差

⑶比较被开方数(如三次根号3大于三次根号2)

任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个。

初一下册数学知识点总结4

单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的`乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式。

初一数学下册知识点总结归纳5

上学的时候,说起知识点,应该没有人不熟悉吧?知识点就是学习的重点。为了帮助大家更高效的学习,下面是小编帮大家整理的初一数学下册基本知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

有理数的加减法

有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì

求n个相同因数的。积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

从算式到方程

方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

等式的性质:

1.等式两边加(或减)同一个数(或式子),结果仍相等。

2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

从古老的代数书说起——一元一次方程的讨论(1)

把等式一边的某项变号后移到另一边,叫做移项。

多姿多彩的图形

几何体也简称体(solid)。包围着体的是面(surface)。

直线、射线、线段

线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

连接两点间的线段的长度,叫做这两点的距离。

角的度量

1度=60分 1分=60秒 1周角=360度 1平角=180度

角的比较与运算

如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

等角(同角)的补角相等。

等角(同角)的余角相等。

收集、整理、描述和分析数据是数据处理的基本过程。

相交线

对顶角(vertical angles)相等。

过一点有且只有一条直线与已知直线垂直(perpendicular)。

连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

平行线

经过直线外一点,有且只有一条直线与这条直线平行(parallel)。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

直线平行的条件:

两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

平行线的性质

两条平行线被第三条直线所截,同位角相等。

两条平行线被第三条直线所截,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。

判断一件事情的语句,叫做命题(proposition)。

平面直角坐标系

含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。

与三角形有关的线段

三角形(triangle)具有稳定性。

与三角形有关的角

三角形的内角和等于180度。

三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于与它不相邻的任何一个内角

多边形及其内角和

n边形内角和等于:(n-2)?180度

多边形(polygon)的外角和等于360度。

二元一次方程组

方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns)。

把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

消元

将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

不等式

用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。

使不等式成立的未知数的值叫做不等式的解。

能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。

含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

不等式的性质:

不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式两边乘(或除以)同一个负数,不等号的方向改变。

三角形中任意两边之差小于第三边。

三角形中任意两边之和大于第三边。

一元一次不等式组

把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。

平方根

如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。

a的算术平方根读作“根号a”,a叫做被开方数(radicand)。

0的算术平方根是0。

如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。

求一个数a的平方根的运算,叫做开平方(extraction of square root)。

立方根

如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。

求一个数的立方根的运算,叫做开立方(extraction of cube root)。

实数

无限不循环小数又叫做无理数(irrational number)。

有理数和无理数统称实数(real number)。

s("content_relate");

初一数学基本知识点总结

01-18

初一数学下册实数期末备考知识点

10-15

初一下册数学知识点

10-13

初一数学下册第二单元知识点

01-22

了初一下册数学知识点

10-17

初一数学下册第五章知识点

10-11

初一下册数学考试知识点

01-27

高一数学下册知识点总结分享

10-21

高等数学下册知识点

07-30

数学初一知识点归纳

10-09

相关推荐

热门文档

71 294501