首页 > 学习资料 > 小学教案 >

《方程》教案精编5篇

网友发表时间 204711

【阅读指引】阿拉题库网友为您分享整理的“《方程》教案精编5篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

《方程》教案1

设计说明:学生在初中学习二次函数时知道二次函数的图象是一个抛物线,在物理的学习中也接触过抛物线(物体的运动轨迹)。因而对抛物线的认识比对前面学习的两种圆锥曲线椭圆和双曲线更多。所以学生学起来会轻松。但是要注意的是,现在所学的抛物线是方程的曲线而不是函数的图象。本节内容是在学习了椭圆和双曲线的基础上,利用圆锥曲线的第二定义统一进行展开的,因而对于抛物线的系统学习具有双重的目标性。

抛物线作为点的轨迹,其标准方程的推导过程充满了辨证法,处处是数与形之间的对照和相互转化。而要得到抛物线的标准方程,必须建立适当的坐标系,还要依赖焦点和准线的相互位置关系,这是抛物线标准方程有四种而不象椭圆和双曲线只有两种形式。因而抛物线的标准方程的推导也是培养辨证唯物主义观点的好素材。

利用圆锥曲线第二定义通过类比方法,引导学生观察和对比,启发学生猜想与概括,利用建立坐标系求出抛物线的四种标准方程,让每一个学生都能动手,动口,动脑参与教学过程,真正贯彻“教师为主导,学生为主体”的教学思想。对于标准方程中的参数 及其几何意义,焦点坐标和准线方程与 的关系是本节课的重点内容,必须让学生掌握如何根据标准方程求 、焦点坐标、准线方程或根据后三者求抛物线的标准方程。特别对于一些有关距离的问题,要能灵活运用抛物线的定义给予解决。

当前素质教育的主流是培养学生的能力,让学生学会学习。本节课采用学生通过探索、观察、对比分析,自己发现结论的学习方法,培养了学生逻辑思维能力,动手实践能力以及探索的精神。

解方程2

教学目标: 

1、初步学会如何利用方程来解应用题

2、能比较熟练地解方程。

3、进一步提高学生分析数量关系的能力。

教学重难点: 

找出题中的等量关系,并根据等量关系列出方程。

教学过程: 

一创设情景,提出目标

1:出示洪泽湖的图片——洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。谁来当主持人,为大家播报一下。

“今天上午8时,洪泽湖蒋坝水位达,超过警戒水位”

2、我们结合这幅图片来了解警戒水位、今日水位,及其关系。

3、提出学习目标:同学们能解决这个问题吗?你还想知道什么?

(1)根据已知条件,找出题目中的数量关系。

(2)根据具体找出的数量关系列出方程,并正确解方程。

设计意图:从生活实例激发学生的学习兴趣。简洁提出目标让学生明白知识点。

二展示成果,激发冲突

1、学生独立解决例3、例4,小组内个人展示。

小组内展示内容主要有例3、例4:

(1)根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?(警戒水位、今日水位、超出部分)

(2)它们之间有哪些数量关系呢?

2、全班展示

(1)第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的:x+=

引导质疑:还有不同的方法列方程解吗?(以此引出第二、第三种方法: ﹣x= 与﹣=x)

学生:第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的。

学生:第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。

师:在解决问题中,我们是怎样来列方程的?(将未知数设为x,再根据题中的等量关系列出方程。)

(2)展示例4,其他学生自由提出疑问,教师辅导解释。

设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学习方法,总结失败原因,发扬成功经验,培养良好的学习习惯。

三 拓展延伸

1:p61页“做一做”的题目

2:独立完成练习十一中的第6、8、9题。

设计意图:通过联系,加强学生对知识的系统化,及时有效地巩固知识。

《方程》教案3

教学目标:

1.系统地掌握有关用字母表示数、方程的基础知识,并用方程解决生活中的实际问题。

2.培养和提高学生的学习能力。

教具准备:

自制幻灯片课件。

教学过程:

一、创设情境。

1.(课件出示)学校买来个9足球,每个a元,买来b个篮球,每个58元。

2.让学生根据出示的信息,提出数学问题。

学生可能提出以下问题

(1)9个足球多少钱?

(2)b个篮球多少钱?

(3)篮球的单价比足球的单价多多少钱?

(4)篮球和足球一共多少钱?

3.学生说出怎样表达这些问题的结果。(教师板书)

4.引导学生观察黑板上的式子,看一看有什么特点?

二、系统整理

1.提问:我们除了学过用字母标示数量关系外,还学过用字母表示什么?

(让学生以小组为单位,合作整理学过的运算定律和计算公式。)

2.引导学生交流小组整理的结果。教师板书

a+b=b+a v=sh

a+(b+c)=(a+b)+c v=abh

a×b=b×c s=ab

a×(b×c)=(a×b) ×c s=ah

a×(b+c)=a×b+a×c ……

运算定律 计算公式

3.在书写数字与这字母相乘、字母与字母相乘时,应注意什么?

完成84页上做一做的内容。

4.启发学生谈一谈,用字母表示数、表示数量关系有什么作用?

5.在用字母表示数的过程中,我们黙认“x”表示什么样的数?

6.让学生填空:含有未知数的等式叫做( )

求“x”值的过程叫做( )

7.让学生说说解方程的依据是什么?

8.学生解方程并订正结果。

9.通过列方程和解方程,可以解决很多生活中的实际问题。下面请同学们看屏幕。

10.(课件出示)学校组织远足活动。计划每小时走千米,3小时到达目的地。实际小时走完了原定路程,平均每小时走了多少千米?

11.学生独立解决问题,教师课堂巡视,了解学生解决问题情况。

12.班内交流结果。并让学生将解题过程演板。

13.谈一谈在用方程解决问题的过程中,应注意什么?

三、归纳小结。

1.让学生说一说这节课我们对哪项知识做了复习和整理?

2.师:有一部分同学在解题的过程中,不习惯用方程解,老师建议大家,为了更好的与中学接轨,要多尝试用方程解,而且你一定会领悟到方程得简明和方便。

四、实践应用。

1.完成85页练习十五的习题。

2. 填空

(1)小华每分钟跑a米,6分钟跑( )米。

(2)三个连续的偶数,中间一个是M,另外两个是( )和( )。

(3)用字母表示三角形的面积计算公式是( )。如果a=4厘米,b=3厘米,则三角形的面积是( )。

(4)老王今年a岁,小林今年(a-18)岁,再过18年,他们相差( )岁。

(5)一堆煤,有a吨,烧了6天。平均每天烧b吨,还剩( )吨。

2、判断

(1)含有未知数的式子叫方程。( )

(2)方程一定是等式,等式一定是方程。( )

(3)6x=0是方程。( )

(4)因为a×6可以写成a·6,所以7×6可以写成7·6。( )

3、下面的式子中,哪些是方程?

(1)5x   (2)6x+1=6

(3)15-3=12   (4)4x+1<9

4、解方程

2x+9=27   =   8+=14

8x-3×9=37   +11x=   x- x=12

(要求学生以竞赛的形式进行计算)

5、趣味数学城

(1)、一只青蛙一张嘴,两只眼睛四条腿。

两只青蛙两张嘴,四只眼睛八条腿。

三只青蛙三张嘴,六只眼睛十二条腿。

四只青蛙四张嘴,八只眼睛十六条腿。

N只青蛙( )张嘴,( )只眼睛( )条腿。

解方程4

年级(小五) 供稿(奥赛组) 列方程解应用题

知识网络

列方程解应用题最关键是前两步:设未知数和列方程。有的同学说的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。

一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。

设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如“相等”、“是”、“比……多……”、“比……少……”、“……是……的几倍”、“……的总和是……”、“……与……的差是……”等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。

重点·难点

列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值,列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程。而找出等量关系又在于熟练运用数量之间的各种已知条件。掌握了这两点就能正确地列出方程。

学法指导

(1)列方程解应用题的一般步骤是:

1)弄清题意,找出已知条件和所求问题;

2)依题意确定等量关系,设未知数x;

3)根据等量关系列出方程;

4);

5)检验,写出答案。

(2)初学列方程解应用题,要养成多角度审视问题的习惯,增强一题多解的自觉性,逐步提高分析问题、解决问题的能力。

(3)对于变量较多并且变量关系又容易确定的问题,用方程组求解,过程更清晰。

经典例题

例1   某县农机厂金工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。

思路剖析

如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦        如果仔细分析题意,会出现除了上面提到的加工甲、乙、丙三种零件的人数为未知数外,还有甲、乙、丙三种零件各自的总件数也未知。而题目中又有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数又在中间起媒介作用。所以如用间接未知数,设已种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数÷工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,从而找出等量关系,即按均衡生产推算的总人数,列出方程 解  答

设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。

答:应安排加工甲、乙、丙三种零件工人人数分别为12人、5人和60人。

例2   牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?

思路剖析

这是以前接触过的“牛吃草问题”,它的算术解法步骤较多,这里用列方程的方法来解决。

设供25头牛可吃x天。

本题的等量关系比较隐蔽,读一下问题:“每天牧草都匀速生长”,草生长的速度是固定的,这就可以发掘出等量关系,如从“供10头牛吃20天”表达出生长速度,再从“供15头牛吃10天”表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。

解  答

设供25头牛可吃x天。

由:草的总量=每头牛每天吃的草×头数×天数

=原有的草+新生长的草

原有的草=每头牛每天吃的草×头数×天数-新生长的草

新生长的草=草的生长速度×天数

考虑已知条件,有

原有的草=每头牛每天吃的草×10×20-草的生长速度×20

原有的草=每头牛每天吃的草×15×10-草的生长速度×10

所以:原有的草=每头牛每天吃的草×200-草的生长速度×20

原有的草=每头牛每天吃的草×150-草的生长速度×10

即:每头牛每天吃的草×200-草的生长速度×20

=每头牛每天吃的草×150-草的生长速度×10

每头牛每天吃的草×200草的生长速度×20+每头牛每天吃的草×150-草的生长速度×10

每头牛每天吃的草×200-每头牛每天吃的草×150

=草的生长速度×20-草的生长速度×10

每头牛每天吃的草×(200-150)=草的生长速度×(20-10)

所以:每头牛每天吃的草×50=草的生长速度×10

每头牛每天吃的草×5=草的生长速度

因此,设每头牛每天吃的草为1,则草的生长速度为5。

由:原有的草=每头牛每天吃的草×25x-草的生长速度

原有的草=每头牛每天吃的草×10×20-草的生长速度×20

有:每头牛每天吃的草×25x-草的生长速度

=每头牛每天吃的草×10×20-草的生长速度×20

所以:1×25x-5x=1×10×20-5×20

解这个方程

25x-5x=10×20-5×20

20x=100

x=5(天)

答:可供25头牛吃5天。

例3    某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?

解  答

设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程

解法一:用直接设元法。

80x-40=(30x+40)×2

80x-40=60x+80

20x=120

x=6(座)

解法二:用间接设元法。

设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。

(x-40)÷30=(2x+40)÷80

(x-40)×80=(2x+40)×30

80x-3200=60x+1200

20x=4400

x=220(米3)

由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。

同理,也可设有红砖x米3。留给同学们练习。

答:计划修建住宅6座。

例4   两个数的和是100,差是8,求这两个数。

思路剖析

这道题有两个数均为未知数,我们可以设其中一个数为x,那么另一个数可以用100-x或x+8来表示。

解  答

解法一:设较小的数为x,那么较大的数为x+8,根据题意“它们的和是100”,可以得到:

x+8+x=100

解这个方程:2x=100-8

所以   x=46

所以  较大的数是  46+8=54

也可以设较小的数为x,较大的数为100-x,根据“它们的差是8”列方程得:

100-x-x=8

所以   x=46

所以  较大的数为100-46=54

答:这两个数是46与54。

解法二:当然这道题也可以设大数为x,那么较小的数可以用100-x或x-8来表示,根据题意,可得到下面两个方程:

x-8+x=100

x-(100-x)=8

解这两个方程,也可以求得较大的数是54,较小的数是46。

例5  如图是一个平行四边形,周长为120米,两个底边上的高分别为12米和18米,它的面积是多少平方米?

思路剖析

此题如果直接设平行四边形的面积为x平方米,当然要从周长来找等量关系;如果不直接设面积为x平方米,而设其中的一个底为x米(如设12米的高所对应的底是x米),由题意可知,等量关系应从平行四边形面积来考虑。

解  答

解法一:设12米的高所对应的底是x米,则平行四边形的面积是12x平方米。

12x=(120÷2-x)×18

12x=(60-x)×18

12x=1080-18x

12x+18x=1080

30x=1080

x=36

12x=12×36=432

解法二:设平行四边形的面积是x平方米。

方程左右两边都乘以12和18的最小公倍数36得

3x+2x=2160

5x=2160

x=432

答:它的面积是432平方米。

发散思维训练

1.丢番图是古希腊著名的数学家,他的墓志铭与众不同,碑文是:“过路人!这里埋葬着丢番图,他一生的六分之一是幸福的童年;又活了一生的十二分之一,面部长起了胡须;随后是一生的七分之一的单身汉生活;婚后五年,他有了一个儿子;可是,儿子活到在丢番图一生年龄的一半时,不幸夭折;儿子死后,父亲在深深的悲哀中又过了4年也与世长辞……”你能计算出他一生中主要经历的年龄吗?

2.今年姐妹俩年龄的和是55岁,若干年前,当姐姐的年龄只有妹妹现在这么大时,妹妹的年龄恰好是姐姐年龄的一半,问姐姐今年多少岁?

3.两个缸内共有48桶水,甲缸给乙缸加水一倍,然后乙缸又给甲缸加甲缸剩余水的一倍,则两缸的水量相等,求两个水缸原来各有多少桶水?

4.早晨6点多钟有两辆汽车先后离开学校向同一目的地开去,两辆汽车离开学校的距离是第二辆汽车的3倍。到6点39分的时候,第一辆汽车离开学校的距离是第二辆汽车的2倍,求第一辆汽车是6点几分离开学校的?

5.一人乘竹排沿江顺水漂流而下,迎面遇到一艘逆流而上的快艇,他问快艇驾驶员:“你后面有轮船开过来吗?”快艇驾驶员回答:“半小时前我超过一艘轮船。”竹排继续顺水漂流了1小时遇到了迎面开来的这艘轮船。那么快艇静水速度是轮船静水速度的多少倍?

参 考 答 案

1.解:

由此可得:丢番图幸福的童年是14岁以前,21岁长胡须,过12年的单身汉生活,21+12=33,33岁结婚,38岁得子,80岁时丧子,儿子只活了42岁,丢番图活了84岁。

2.解:

若直接设姐姐今年为x岁,则妹妹的年龄不好表示,所以我们设若干年前妹妹年龄为x岁,这样,姐姐在若干年前就为2x岁,妹妹今年年龄为2x岁,姐姐今年年龄是3x岁,于是,根据“今年姐妹俩年龄和为55岁”这一等量关系,可列方程

2x+3x=55

5x=55

所以x=1

所以,妹妹今年的年龄为11×2=22(岁);姐姐今年的年龄为11×3=33(岁)。

答:姐姐今年33岁。

3.解:

设原来甲缸有x桶水,乙缸有(48-x)桶水。甲缸给乙缸加水一倍,则甲缸有水[x-(48-x)]桶,乙缸有水2(48-x)桶,乙缸又给甲缸加甲缸剩余水的一倍,则甲缸有水2[x-(48-x)]桶,乙缸有水{2(48-x)-[x-(48-x)]}桶,根据题意得:

2[x-(48-x)]=2(48-x)-[x-(48-x)]

2x-2(48-x)=2(48-x)-x+(48-x)

3x=5(48-x)

3x=5×48-5x

8x=5×48

x=30

所以48-x=48-30=18

答:甲缸原有水30桶,乙缸原有水18桶。

4.解:

两辆汽车的速度都是60千米/小时=1千米/分。设在6点32分时第二辆汽车离开学校的距离为x千米,则第一辆汽车离开学校的距离为3x千米,到6点39分时两辆汽车都行了7分钟,行程都是7千米,与学校的距离:第二辆汽车为(x+7)千米,第一辆汽车为(3x+7)千米,根据题意得:

2(x+7)=3x+7

2x+14=3x+7

x=7

所以3x=3×7=21

因此,在6点32分时,第一辆车已行驶了21分钟,32-21=11

答:第一辆汽车是早晨6点11分离开学校的。

5.解:

设快艇静水速度为m,轮船静水速度为n,水流速度为v,显然竹排速度就是水流速度v,由“顺流速度=船速+水速,逆流速度=船速-水速”的数量关系进行解答。

这样,快艇从超过轮船起,遇到竹排(用了小时)止,这段路程(快艇行程)为(m-v)×,而这段路程是竹排行驶1小时、轮船行驶(1+=小时)的路程之和,即v+(n-v)×。因而

(m-v)×=v+(n-v)×

=v+

=

=

m÷n=3

答:快艇静水速度是轮船静水速度的3倍。

简易方程5

教学目标 

1.使学生初步学会 这一类简易方程的解法。

2.理解这类方程的格式。

3.进一步掌握解方程的格式。

教学重点

掌握解 这一类方程的解法。

教学难点 

理解这一类方程的算理。

教学步骤

一、复习引入

(一)复习方程的意义。

1.什么叫方程?

2.什么叫解方程?

(二)用方程表示下面的数量关系。

1. 与4的和等于40.

2. 的3倍等于40.

3. 的3倍加上4等于40.

二、新授教学

(一)教学例2

例2.看图列方程,并求出方程的解。

1.读题,理解题意。

2.分析图意,找等量关系。

3.教师提问

(1)观察图形你都知道了什么?

(2)3盒零4支和多少相等?

(3)怎样列方程?

4.列方程并解答。

(1)教师板书:

(2)教师提问:要想求每盒彩色笔多少支,应当先求什么?解这个方程要先算一步?

(3)教师说明:要把 看作是一个数。即; ,加数等于和减另一个加数,

那么 .

5.学生独立解答。

6.集体订正,板书全部解题过程。

解: (根据加数=和-另一个加数)

(根据因数=积÷另一个因数)

检验:把 代入原方程,

左边=3×12+4=40,右边=40,

左边=右边,

所以 是原方程的解。

7.小结:解这样的方程,关键是要把 看作是一个数,先求出 ,再求出 得多少。

8.练习:

(二)教学例3

例3.解方程

1.思考

(1)例3与例2有什么相同点?有什么不同点?

(2)应该先算什么,再算什么,最后算什么?

2.学生独立解答,集体订正。

3.小结:解这一类方程,要先根据四则运算的顺序,把方程中包含的计算算出来,再

把 与因数的积看成是一个数,根据四则运算各部分间的关系一步步求出解。

4.练习:解方程

三、课堂小结

今天你学习的解方程与以前所学的解方程有什么不同?

四、巩固练习

(一)口头解下列方程,并说出每一步的根据。

1.

2.

(二)解下列方程,并检验。

1.

2.

3.

(三)在、、、、4这五个数中,

哪个数是方程 -=的解?

哪个数是方程22×-2 =4的解?

思考:怎样做比较简单?

五、课后作业

解方程

1.

2.

3.

六、板书设计 

解简易方程

例2.看图列方程,并求方程的解

教案点评:

新授部分注意了新旧知识之间的联系与区别,抓住关键,提出具体思考价值的问题,引导学生讨论,在初步理解的基础上进行试做,再通过看书学习,讲清道理,使学生透彻的理解。

练习中注意专项练习与综合练习相结合,有利于学生掌握本课的重点,合理组建知识结构。

相关推荐

热门文档

16 204711