首页 > 学习资料 > 小学教案 >

人教版五年级下册数学教案【汇编4篇】

网友发表时间 353266

【阅读指引】阿拉题库网友为您分享整理的“人教版五年级下册数学教案【汇编4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

人教版五年级数学下册教案【第一篇】

一、教学内容

课本P38~40。

二、教学目标

1.知识与技能

使学生理解体积的意义;认识常用的体积单位:立方米、立方分米、立方厘米。

2.过程与方法

让学生经历探索体积和体积单位的过程,发展学生的空间观察能力和培养学生的推理能力。

3.情感、态度与价值观

使学生形成空间观念,体验所学知识与现实生活的联系,使其能运用所学知识解决生活中简单的问题,从中获得价值体验。

三、重点难点

1.教学重点

体积概念的建立以及对体积计量方法的理解。

2.教学难点

感知物体的体积以及建立体积单位的概念。

四、教学用具

1立方米、1立方分米、1立方厘米的模型;水杯,水,沙子,大小石块(用线系好),木块等;10个1立方厘米的正方体。

五、教学设计

(一)铺垫选择研究方向

1.引入:在装有半杯蓝色水的玻璃杯中(先在水面处做个记号)放入一块石块。

2.观察思考。

(视频脚本三:长方体和正方体4.土豆放入水杯的动画片。)

(1)水面的位置发生了什么变化?杯中的水为什么会上升?

(2)杯中的水为什么会上升,这就是我们今天要研究的内容。

(二)发现并认识体积

1.想一想:是不是所有的物体都占有一定的空间?用桌上提供的物品验证。有:木块、沙子、火柴盒、工具箱、石块、玻璃球……

2.教师巡视与学生一起探讨。

3.提问汇报。

(1)你们是怎样进行实验的?

(2)你们在实验过程中观察到了什么现象?

(3)学生动手操作。

(4)学生回答。

生:我们拿出自带的装满细沙的杯子,先把细沙倒在纸上,把一块木块放入杯中,然后再把细沙倒入杯中,沙子不能全部倒入杯中,有剩余部分,因为木块占有一定空间。

4.表象再现。

(1)闭眼回忆刚才验证物体的样子。

(2)学生闭眼想象。

5.抽象体积的概念。

(1)物体所占的空间一样吗?

(2)学生回答。

生:我们先把小石块放入杯中,然后在水面上升处作个记号。取出石块,再放入大一些的石块,发现水面比原来的水面高了。

(3)为什么上升的水面会比原来的高?

(4)学生回答。

生:因为大石块占的空间大,所以上升的水面比原来的高。也就是说,物体的大小不一样,所占空间的大小也不一样。

6.看来物体所占空间有大有小,物体所占空间的大小就是物体的体积。

(1)什么叫物体的体积?

(2)学生回答:物体所占空间的大小叫做物体的体积。

7.看书质疑。

(三)自我探索体积单位

1.要知道一个物体的体积有多大,或者一个物体的体积比另一个物体的体积大多少或少多少,该怎么办?这就需要计量,计量体积要用体积单位。

2.猜想。

你听说过哪些体积单位?

(1)常用的体积单位有哪些?

(2)汇报:将你们学习到的说给大家听听。

(3)学生回答。

棱长1厘米的正方体,体积是1立方厘米;

棱长1分米的正方体,体积是1立方分米;

棱长1米的正方体,体积是1立方米。

(视频脚本三:第三单元长方体和正方体5.视频“1立方米的空间有多大”的演示)

3.估量体积单位。

(1)1立方厘米的空间有多大?比画比画。

(2)什么物体的体积大约接近1立方厘米?

(3)1立方分米有多大?比画比画。

(4)什么物体的体积接近1立方分米?

(5)1立方米呢?

(6)1立方米有多大?利用一些工具体验大小,你们钻进去试一试。(准备3个米尺)

4.填入适当的单位。

(1)橡皮的体积大约是5()。

(2)桌子的体积大约是240()。

5.质疑。

(四)体积的初步计量

1.教师演示(学生跟着摆)。

(1)出示2个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?

(2)出示6个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?

(3)(改变长方体的摆法)这是长方体吗?它的。体积是多少?为什么仍是6立方厘米?

(4)(再改变形状)形状变了,体积有没有变?为什么?

(5)为什么不管摆什么形状,体积都是6立方厘米?

2.学具操作。

(1)你们每人桌上都放有10个1立方厘米的正方体,现在请你们摆一个体积是9立方厘米的长方体,想想怎么摆?

(2)为什么所摆的长方体的体积都是9立方厘米?

3.归纳概括。

(四人一组讨论)根据刚才所摆的图形,你怎么知道这些物体的体积是多少的?

(五)巩固练习

1.填空

常用的体积单位有()、()、()。

常用的面积单位有()、()、()。

常用的长度单位有()、()、()。

棱长()的正方体的体积是1立方厘米。

棱长()的正方体的体积是1立方分米。

棱长()的正方体的体积是1立方米。

2.在括号里填上适当的单位。

(1)一根粉笔的体积大约是10()。

(2)讲台桌的体积大约是()。

(3)一本《新华字典》的体积大约是()。

(4)一张信纸的面积大约是5()。

(5)一块城砖的体积大约是3()。

3.拼一拼,说说是由几个1立方厘米的正方体组成的?

(六)全课总结

通过这节课你有哪些心得和体会?你还有哪些问题?

(七)板书设计

体积和体积单位

意义:物体所占空间的大小叫做物体的体积。

单位:立方厘米、立方分米、立方米。

计量:要看这个物体含有多少个体积单位。

人教版五年级数学下册教案【第二篇】

教学内容

质数和合数(课本第14页例1及第16页练习四1~3题)。

教学目标

1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2.知道100以内的质数,熟悉20以内的质数。

3.培养学生自主探索、独立思考、合作交流的能力。

4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

重点难点

质数、合数的。意义。

教学过程:

复习导入

1.什么叫因数?

2.自然数分几类?(奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

新课讲授

1.学习质数、合数的概念。

(1)写出1 ~20各数的因数。(学生动手完成)

点四位学生上黑板写,教师注意指导。

(2)根据写出的因数的个数进行分类。(填写下表)

(3)教学质数和合数概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。

如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)

2.教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17 22 29 35 37 87 93 96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:17 29 37

合数:22 35 87 93 96

3.出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。

③注意1既不是质数,也不是合数。

课堂作业

完成教材第16页练习四的第1~3题。

课堂小结

这节课,同学们又学到了什么新的本领?学生畅谈所得。

教学板书:

质数和合数

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

1既不是质数,也不是合数。

教学反思:

教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

人教版数学五年级下册教案【第三篇】

教学目标

(1)知识目标:

①使学生理解分数化成小数的方法,能根据分数与除法的关系把分数化成小数。

②使学生认识能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。

(2)能力目标:在学生对能化成有限小数的最简分数的过程的参与讨论中培养学生观察、归纳、解决问题的能力。 (3)情感目标:在找出能化成有限小数的最简分数的规律过程中培养学生对待知识的科学态度和探索精神。

教学重难点

教学重点:分数与小数互化的方法

教学难点:能化成有限小数的分数的特点。

教学过程

一、设置悬念 导入新课

1、师:在我们的日常生活中,经常会遇到这样的问题:“小红和小明进行登山比赛,从山下到山顶,小红用了小时,小明用了3/4小时,哪位同学登得快?”

要解决这个问题,你有什么好办法?

生1:把小数化成分数,再比较。

生2:把分数化成小数,再比较。

师:大家的想法都很好,要想比较两个人的速度,需要把这两个数统一成一类数,要么都是小数,要么都是分数,这样才能便于比较,今天这节课我们就来学习分数、小数互化的一般方法。(板书课题)

二、自主探究 学习新知

1、自主探究小数化分数的方法:

(1)出示例1:把一条3米长的绳子,平均分成10段,每段长多少米?

师:谁来列出算式?

生:3÷10=米

3÷10= 3/10米

师:还是这根绳子,如果平均分成5段,每段长多少米?

生:3÷5=米

3÷5=3/5米

师:观察一下上面两组算式,你发现了什么?

生:= 3/10

=3/5

师:两种不同形式结果是相等的,说明小数和分数是可以相互转化的。同学们想一想,能不能把一个小数直接化成分数呢?

怎样能较快地把小数化成分数?

问题:请你自己试着把 和 转化成分数。

学生独立完成。课件演示。

问题:1.说说你的想法。 2.这样转化的依据是什么? 3.把小数化成分数要注意什么?

生:能,因为小数表示的就是十分之几,百分之几,千分之几。.。的数,所以可以直接化成分母是10、100、1000.。.的分数,再化简就行了。

(2)师:试一试,请大家在练习本上,尝试把下面的小数化成分数:

= = =

(3)学生独立解答,教师巡视。请学生到黑板板演,并讲解自己把小数化成分数的方法,师生小结如下: 把小数化成分数,原来有几位小数,就在1的后面写几个0做分母,原来的小数去掉小数点做分子。

师:小数化成分数,需要注意什么呢?

生:需要化简的分数,要化简成最简分数,还要看清楚原来的小数是几位小数。

2、自主探究把分数化成小数的一般方法:

怎样能较快地把分数化成小数?

把化成小数(不能化成有限小数的保留两位有效小数)。

师:现在就请大家以小组为单位,讨论交流,用你们喜欢的方法做。

问题:1.说说你的想法。 2.这样转化的依据是什么? 3.把分数化成小数要注意什么?

要求:各小组推荐一名代表来作汇报。

(2)交流反馈:

请小组派代表板书,并讲解本组比较的过程及方法。其他同学质疑。(课件出示)

师:你认为哪种方法比较简便?你是怎样把分数化成小数的?

生:我认为把分数化成小数比较更简便,因为不需要通分了。

生:分数化成小数的一般方法是:分子÷分母(除不尽时按要求保留几位小数)

用分子除以分母除不尽时,要根据需要按“四舍五入”法保留几位小数。

特殊方法:分母是10、100、1000.。.时,直接写成小数;分母是10、100、1000.。.的因数时,可以化成分母是10、100、1000.。.的分数,再写成小数。

试一试: 把下面的分数化成小数(不能化成有限小数的保留两位小数)。问题:说说你的想法。

三、巩固应用

1、师:刚才我们一起研究了分数和小数的互化,让我们再次回到开始时提到的问题,你能解决了吗?下面就用你喜欢的方法比较吧!

2、李阿姨和王叔叔谁打字快些?

问题:

1、 怎样比较它们的大小?

2、 你想把小数转化成分数还是把分数转化成小数?

强调学生说一说自己解决问题的过程,教师及时作出评价。

1、把 、9/10 、 、43/100 、7/25 、13/47 这6个数按从小到大的

顺序排列起来。

拓展提高:

你知道吗?

下面这些分数中哪些可以化成有限小数?

四、畅谈收获 知识小结

谁来说一说你今天这节课都学习了哪些知识?你最大的收获是什么?

五、布置作业 巩固知识

作业:第78页练习十九, 第3题、第8题、第10题。

人教版七年级下册数学教案【第四篇】

教学目标

1、使学生通过生活中的事例,初步体会“植树问题”的思想方法。

2、初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力。

3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学重难点

教学重点: 探索发现“植树问题”的解题规律。 教学难点: 运用“植树问题”的解题思想解决实际问题。

教学过程

一、对比引入,揭示课题

1.出示复习题:在一条6m长的小路的一旁栽树,每隔3 m栽一棵(两端都栽),一共要栽多少棵树?

(1)要求学生说一说自己是怎样解决这个问题的。(指名汇报)

(2)对于两端都栽的植树问题,棵数和间隔数之间有怎样的关系?你能用一个式子表示它们之间的关系吗?(指名回答:棵数=间隔数+1)

2.引入新课。

师:同学们对于上节课的知识掌握得非常好!如果老师把上题改为:在一条6m长的小路的一旁栽树,每隔3 m栽一棵(两端不栽),一共要栽多少棵树?

(1)想一想,这道题与上一道题相比较,有什么变化?

(2)说一说你是怎么理解“两端不栽”的。(学生思考后自由汇报) 师:这节课我们就来研究一下“两端不栽”的植树问题,看一看棵数与间隔数之间有怎样的关系。(板书课题)

设计意图:让学生在熟悉的情境中借助已有的知识经验开展学习,充分调动学生学习的积极性,让学生在不知不觉中进入学习环境。

二、合作探究,发现规律

1.从简单的数据分析,发现两端不栽的规律。

(1)教师引导学生用画线段、摆图形、摆小棒等自己喜欢的方法在小组内研究,并完成下面的统计。

总长 间距(3 m) 间隔数(个) 棵数(两端不栽)

6 m 间距(3 m) 2 1

9 m 间距(3 m) 3 2

12 m 间距(3 m) 4 3

15 m 间距(3 m) 5 4

18 m 间距(3 m) 6 5

.. .. .. ..

(2)填写完后在小组内交流一下,你是用什么方法进行验证的?从中你发现了什么规律?(生自由汇报:两端不栽,棵数比间隔数少1或间隔数比棵数多1) 设计意图:学生是学习的主人,设计丰富的探究活动,采用多样的学习方式,引导学生主动参与探究的过程。教师放手让学生想一想、画一画、说一说,既满足了学生的表现欲望,又培养了他们自主探究的意识。教师恰当地向学生渗透“遇到比较复杂的问题先想简单的问题,从简单的问题入手来研究”这一数学思想。

2.自主学习,应用规律解决教材107页例2。

同学们在全长10 米的小路一边植树,每间隔5米栽一棵。(两端不栽)一共要栽多少棵?

(1)相邻两棵树之间的距离是5米。一共要栽多少棵树?

①认真读题,分析题意,说一说自己发现的数学信息。

②独立思考,怎么解决。

③组内交流,确定方法。

(2)交流汇报。

师:请各小组把自己的解决方法介绍给大家,看哪个小组的最合理?

①各小组汇报自己的算法。

方法10÷5=2(棵) 2-1=1(棵)

②课件演示

3.同学们在全长10 米的小路一边植树,每间隔2米栽一棵。(两端不栽)一共要栽多少棵?学生独立完成,课件演示。

为了美化环境,学校准备在操场边上的一条100米长的小路一边植树,每间隔5米栽一棵(两端不栽) ,需要准备多少棵树苗呢?

4.总结规律。 师:从前面的分析中你发现了什么规律?能用一个式子表示出来吗? (根据学生的汇报板书:棵数=间隔数-1)

师总结:在生活中,有这种规律的数学问题叫做两端不栽的植树问题。

设计意图:如果说生活经验是学习的基础,学生间的合作交流是学习的推动力,那么本环节将“发现规律”与“运用规律”结合起来,通过不完全归纳法验证自己找到的规律,渗透了代数思想。

三、联系实际,巩固应用

1.长平村的村道长1000米,在村道一旁安装路灯(两端不安),每隔20米安装一盏,根据这些信息,你能算出这条村道一共安装了多少盏路灯吗? (结合生活实际去分析题意,独立解答)

2.大象馆和猩猩馆相距60米,绿化队要在小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

(应用规律进行解答)

四、全课总结

同学们,今天你有哪些收获?在应用规律解决问题的时候需要注意些什么呢?

五、布置作业

教材110页8题。

脑筋急转弯:把一根木头钜成6段,要钜多少次?

板书设计 植树问题(两端不栽) 棵数=间隔数-1

相关推荐

热门文档

16 353266