六年级数学教学设计【汇编5篇】
【导言】此例“六年级数学教学设计【汇编5篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
小学六年级数学优秀教案【第一篇】
知识目标 使学会解比例的方法,进一步理解和掌握比例的基本性质。
能力目标 联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。
情感目标 利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。
重点使学 会解比例的方法,进一步理解和掌握比例的基本性质。
难点体现 解比例在生产生活中的广泛应用。
教学过程
一、旧知铺垫
1、什么叫做比例?
2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?
3、比例有几种表示形式?
二、探索新知
1、出示埃菲尔铁挂图
2、出示例题
(1)、读题。
(2)、从这道题里,你们获得了哪些信息?
(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)
(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)
(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)
(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)
(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。
(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)
(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?
(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)
(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)
(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)
(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)
(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。
(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例。)
(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。
2、教学例3
过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?
(1)、出示例3,问:这题与刚刚那个比例有哪些不同?
(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)
(3)、在这个比例里,哪些是外项?哪些是内项?
(4)、解答(提问:你们是怎么解答的?)、检验。
(5)、=
拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?
总结这节课主要学习了什么内容?
作业布置教材43页5题
板书设计解比例
例3、解比例=
解:=×6
=()×()
()
六年级数学教案【第二篇】
一、 教学内容:九年义务教育六年制第九册第二单元《倒数的认识》
二、 教材分析:
倒数的认识是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。倒数的认识是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
三、 教学目标:1.理解倒数的意义,掌握求倒数的方法。
2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。
四、 教学重点:理解倒数的意义,掌握求倒数的方法。
五、 教学难点:熟练写出一个数的倒数。
六、 教学过程:
(一)、 谈话
1.交流
师: 我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么关系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存关系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存关系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。
(二)、学习新知
对数游戏
1.学习倒数的意义
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数 。
师:4是3的4/3,
生:3是4的 3/4
师:7是15的7/15; 生:15是7的15/7。
提问;看我们做游戏的结果,你们有没有发现什么?
六年级数学教案【第三篇】
本学期总第7课时
教学课题:百分数折扣
教学内容:第8页“折扣”、做一做及练习二第1至3题。
教学目标:知识与技能明确折扣的含义,能熟练地把折扣写成分数、百分数,正确解答有关折扣的实际问题。
过程与方法:学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。
情感态度与价值观:感受数学知识与生活的紧密联系,激发学习兴趣。
教学重点:会解答有关折扣的实际问题。
教学难点:合理、灵活地选择方法,解答有关折扣的实际问题。
教法与学法:引导交流,合作探究
教学准备:白板课件
教学过程:
一、情景导入
圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?
二、新课讲授
1、理解“折扣”的含义。
(1)刚才大家调查到的打折是商家常用的`手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?
(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(课件出示)
(3)引导提问:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?
(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?
(5)学生动手操作、计算、讨论,找出规律:原价乘以70%恰好是标签的售价或现价除以原价大约都是70%。
(6)归纳定义。
通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。
2、解决实际问题。
(1)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
①导学生分析题意:打八五折怎么理解?是以谁为单位“1”?
②先让学生找出单位“1”,然后再找出数量关系式:原价×85%=实际售价
③学生独立根据数量关系式,列式解答。
④全班交流。根据学生的汇报,板书:
(2)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
①导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”?
②学生试算,独立列式。
③全班交流。根据学生的汇报并板书。
3、提高运用
在某商店促销活动时,原价200元的商品打九折出售,最后剩下的个,商家再次打八折出售,最后的几商品售价多少元?
引导学生分析,学生独立完成,再集体交流,让学生明确:“折上折”相当于连续求一个数的百分之几是多少。
三、巩固练习
1、完成教材第8页“做一做”练习题。
2、完成教材第13页练习二第1~3题。
四、课堂小结
通过这节课的学习你有什么收获?
六年级数学教案【第四篇】
教学内容
教科书第112页例1、第113页例2及“做一做”中的题目,完成练习二十九的第1~4题.
教学目的
使学生在学过的百分数的意义和分数应用题的基础上,能够正确地解答求一个数是另一个数的百分之几的应用题.
教具准备
将复习中的第1题图画在小黑板上,第2题写在黑板上.
教学过程
一、复习
1.看图,回答下面的问题.
(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?
(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?
先让学生想一想,然后,再指定学生回答.
2.五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的几分之几?
出示上面的复习题后,先让学生在练习本上做,同时,请3名学生在黑板上每人做一题.
核对第2题时,教师可以说明:这道题是求五年级学生中已达到国家体育锻炼标准的人数占五年级全体学生人数的几分之几.
然后提问:
“解答这样的题目关键是什么?”
“关键是应该以谁作单位‘1’?”
“用什么方法计算?怎样列式?”
教师:这是我们过去学过的分数应用题.百分数的应用题跟分数应用题类似.下面我们就来学习百分数应用题.板书课题:百分数的一般应用题(一).
二、新课
1.教学例1.
出示例1:“五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的百分之几?”
请学生读题,提问:
“这道题和上面复习中的第2题有什么不同?”
“解答这道题应该以谁作单位‘1’?用什么方法计算?怎样列式?”学生口述,教师板书:120÷160==75%
教师:这道题和上面复习中的第2题相比,题目的条件完全相同,只是问题不同.因为这道题的问题是求占五年级学生人数的百分之几,所以要把结果化成百分数.
2.出示练习题:“一班种树40棵,二班种树48棵,二班种树的棵数占一班的百分之几?”先让学生想一想,再提问:
“这道题怎样列式?”
让学生讨论一下.
学生讨论后,教师说明:解答这样的题目,必须看清求的是什么,弄清以谁作单位“1”?把数量关系弄清楚了,才能确定怎样列式.
3.教学例2.
教师:百分数在日常生活和生产中的应用非常广泛.比如在农业生产中,要实行科学种田,播种前需要进行种子发芽试验,然后根据发芽的种子数占试验种子总数的百分之几,决定单位面积的播种量.这样既能确保基本苗的数量,又可以避免浪费种子.通常把“发芽的种子数占试验种子总数的百分之几叫做发芽率”(口述后再板书发芽率的概念).求发芽率是百分数在农业生产上的一种重要应用.
口述并板书发芽率计算公式:
发芽率=×100%
教师指着公式中的百分号说明:在这个公式中为什么要乘100%呢?因为发芽率是指发芽的种子数占试验种子总数的百分之几,如果公式只写成,不加“×100%”,一般来讲,这只是分数形式,除得的商是小数,而不是百分数.如果在的后面加上“×100%”,相当于乘1,这样就可以使除得的结果化成大小不变的百分数了.所以在计算发芽率的公式中必须加上“×100%”.我们在这以后还要学习像出粉率、合格率、出勤率等等,这些也要用百分数表示,所以它们的计算公式也必须加上“×100%”.
小学六年级数学优秀教案【第五篇】
教学目标:
1.使学生学会在具体情境中探索确定位置的方法,懂得能用数对表示物体的位置。
2.经历探索确定物体位置的方法的过程,让学生在学习的过程中发展空间观念。
3.使学生感受确定位置的丰富现实情景,体会数学的价值,产生对数学的亲切感。
教学重点:能用数对表示物体的位置。
教学难点:能用数对表示物体的位置,正确区分列和行的顺序。
教学准备:投影仪、本班学生座位图
教学过程:
一、复习旧知,初步感知
1、教师提问:同学们,你能介绍自己座位所处的位置吗?
学生介绍位置的方式可能有以下两种:
(1)用“第几组第几个”描述。
(2)用在我的“前面”、“后面”、“左面”、“右面”来描述。让学生先说说
2、我们全班有48名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
3、学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、新知探究
1、教学例1(出示本班学生座位图)
(1)如果老师用第二列第三行来表示同学的位置,那么你也能用这样的方法来表示自己的位置吗?
学生对照座位图初步感知,说出自己的位置。个别汇报,集体订正。
(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3)教学写法:同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)
2、小结例1:
(1)确定一个同学的位置,用了几个数据?(2个)
(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。比较(2,3)与(3,2)的不同。
{在比较中发现不同之处,从而加深学生对数对的更深了解。}
3、 练习:
(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
(电影院里的座位、地球仪上的经纬度、我国古代围棋等。)
{拓宽学生的视野,让学生体会数学在生活中的应用。}
三、当堂测评
教师课件出示,学生独立完成。小组内评比纠错。
{做到兵强兵、兵练兵。}
四、课堂总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?还有什么不懂的?
{让学生说出,了解对知识的掌握情况。}