直线点斜式方程教学设计【最新4篇】
【导言】此例“直线点斜式方程教学设计【最新4篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
直线的点斜式方程教案设计【第一篇】
《直线的点斜式方程》教学设计 课题:§ 直线的点斜式方程
双墩中学:洪良树
一、教学目标
1.知识与技能
(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程;(3)体会直线的斜截式方程与一次函数的关系。2.过程与方法
在已知直角坐标系内确定一条直线的几何要素—直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程,学生通过对比理解“截距”与“距离”的区别。3.情感、态度与价值观
通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形 结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。通过平行直线系,感受数学之美,激发学习数学的积极主动性。
二、教学重难点
1.教学重点:直线的点斜式方程和斜截式方程。重点突出策略:让学生以个人思考和小组讨论相结合的方式自行推导两种形式的方程。2.教学难点:直线的点斜式推导过程中直线与方程对应关系的理解,即纯粹性和完备性。
难点突破策略:由具体例子到一般问题,从有限关系到无限事实,让学生能初步体会直线的方程和方程的直线之间的对应关系,即纯粹性和完备性。为以后曲线与方程的对应关系做铺垫。此处的要求不易过高,也不可能一次到位,要有一个螺旋上升的过程。
三、教学过程设计
(一)复习提问
问题1:直线的倾斜角与斜率 k 之间的关系是怎样的?
问题2:经过两点P1(x1,y1)和P2(x2,y2)(x1x2)的直线的斜率公式是什么? 问题3:设两条不重合的直线l1,l2的斜率分别为k1,k2,则这两条直线平行于垂直的条件? 设计意图:检测学生前面两节课的学习效果,同时也为本节课的顺利开展做必要的准备。
(二)引入新课
问题1:过定点P(x0,y0)的直线有多少条? 问题2:倾斜角为定值的直线有多少条?
问题3:确定一条直线需要什么样的条件?
设计意图:通过3个简单问题来引入新课,使得学生在思维上过渡合理自然,连接光滑顺畅。
(三)开始新课 1.探究一般问题:
若直线 l 经过点 P0(x0,y0),斜率为 k, 这条直线上的任意一点 P(x,y)的坐标 x与y之间满足什么关系呢? 设计意图:让学生通过个人思考和小组讨论相结合的方式运用复习的内容自行推导出直线的点斜式方程。
根据斜率公式,可以得到,当x≠x0时,k即y – y0 = k(x – x0)(1)
yPP0yy0,xx0Ox
2.(1)过点P0(x0,y0),斜率是k的直线l上的点,其坐标都满足方程(1)吗?(2)坐标满足方程(1)的点都在经过P0(x0,y0),斜率为k的直线l上吗? 设计意图:使学生了解方程为直线方程必须满两个条件,3.指出方程(2)由直线上一定点及其斜率确定,所以把y – y0 = k(x – x0)(1)叫做直线的点斜式方程,简称点斜式(point slope form).4.直线的点斜式方程能否表示坐标平面上的所有直线呢? 设计意图:使学生理解直线的点斜式方程的适用范围。
5.(1)经过点P0(x0,y0)且平行于x轴(即垂直于y轴)的直线方程是什么?
(2)经过点P0(x0,y0)且平行于y轴(即垂直于x轴)的直线方程是什么?(3)x轴所在直线的方程是什么?y轴所在直线的方程是什么?
式。yP0 y P 0 OxO x 设计意图:进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形6.例1:一条直线经过点P1(-2,3),倾斜角α=450,求这条直线的方程,并画出图形。
设计意图:让学生熟练掌握使用点斜式的两个条件,和画图的思想方法 7.即时练习 1.填空题:
(1)已知直线的点斜式方程是 y-2=x-1,那么直线的斜率为___,倾斜角为___.(2)已知直线的点斜式方程是y23(x1),那么直线的斜率为__,倾斜角为___.2.写出下列直线的点斜式方程:(1)经过点A(3,-1),斜率是2;
(2)经过点B(2,2),倾斜角是30°;(3)经过点C(0,3),倾斜角是0°.(4)经过点D(-4,-2),倾斜角是120设计意图:巩固新学知识和运用新学知识,8.如果直线 l 的斜率为 k,且与 y 轴的交点为(0,b),求直线 l 的方程。设计意图:由学生独立求出直线l的方程 y = kx + b,可以用斜率公式,也可以用点斜式的结论。巩固新学知识和运用
9.指出方程y = kx + b,由直线的斜率k与它在y轴上的截距b确定的方程叫做直线的斜截式方程,简称斜截式。讨论方程的适用范围。设计意图:让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。使学生理解“截距”与“距离”两个概念的区别。10.即时练习
3.写出下列直线的斜率和在 y 轴上的截距:
y 2 x x(3)
(1)
1(2)
y
4y x(4)y34.写出下列直线的斜截式方程:
(1)斜率为3,在 y 轴上的截距是-2;(2)斜率为-2,在 y 轴上的截距是 设计意图:巩固新学知识和结论,部分同学会在一些问题上出现错误,适时强调斜截式的结构特征,并体会直线的斜截式方程与一次函数的关系。111.分组讨论
1.观察方程ykxb,它的形式具有什么特点?
2.斜截式与一次函数形式类似,有什么区别? 3.斜截式与点斜式的关系 4.截距与距离一样吗?
设计意图:巩固新学知识和结论,让学生更加了解方程的结构特征,并总结直线的斜截式方程与点斜式。一次函数的关系。 bx 12:例
2已知直线 l 1 : y
k
1,l 2 : y
k 2
b 2
1xl1
(1)l1 //
l2的条件是什么?(2)
l2的条件是什么?
设计意图:让学生动手画图,先做到直观感知,教师通过多媒体的演示,进行操作确认,体现和贯彻新课改的理念。13.课堂小结
让学生总结本节课的知识点,再以多媒体形式呈现出来,教师渗透数学思想发法,让学生慢慢体会。14.作业布置
习题 A组1、3题; 15课后反思
第一章 直线教案 直线方程的点斜式、斜截式 教案【第二篇】
亿库教育网
第一章 直线教案 直线方程的点斜式、斜截式教案
教学目标
1.通过教学,学生能掌握直线方程的两种表现形式,即点斜式、斜截式.
2.通过教学,提倡学生用旧知识解决新问题;尊重从特殊→一般→特殊的认识规律. 3.培养学生的探索、概括能力,同时也培养学生思维的科学性与创造性. 教学重点与难点
引导学生根据直线这一结论探讨确定一直线的条件,并会利用探讨出的条件求出直线的方程. 教学过程
师:在初中,我们学习过一次函数y=kx+b及其图象l(一条直线),下面请同学们思考以下几个问题: 1.对函数y=kx+b来说,当不区分自变量x和 y时,我们可以将y=kx+b叫做什么?(二元一次方程)2.对于直线l来说,k和b在l中表示什么?(“k”表示直线 l的方向,其值满足 k=tanθ,因此,把 k叫做直线 l的斜率;“b”表示直线l与y轴交点的纵坐标,又叫做直线l在y轴上的纵截距.)
3.方程y=kx+b与直线l之间存在着什么样的关系?(以这个方程的解为坐标的点都是这条直线上的点;反之,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线.)师:你怎么知道以方程y=kx+b的解为坐标的点都是直线l上的点呢?你都验证了吗? 生:„„
师:事实上,可以证明
证明:设P(x1,y1)在l上,则由相似三角形性质,所以y1=kx1+b,即(x1,y1)是方程y=kx+b的解. 反之:设(x1,y1)是y=kx+b的解,则
亿库教育网
亿库教育网
师:通过上述问题,我们弄清了方程y=kx+b的解和直线l上的点之间的关系,它们是一种什么关系呢? 生:一一对应关系.
师:很好!有了这种一一对应关系,那么我们在研究直线时,就可以通过方程来考虑,这也正是解析几何研究问题的基本思想.
现在我们不妨考虑一下,如果把直线当做结论,那么,确定一条直线需要几个条件? 生:两个条件. 师:哪两个条件?
生甲:需要知道k和b的值就可以了.
生乙:因为两点确定一条直线,所以只要知道两个点就可以确定一条直线. 师:两位同学说得都很好,还有其它条件吗? 生:„„
师:好!大家提出了许多种,今天先讨论其中的两种.若已知k、b,求直线方程. 生:设P(x,y)为l上任意一点,由经过两点的直线的斜率公式得:
师:推导过程很正确!我们能不能把题目再引申一下,使其更具有一般性?
生:把条件改为:已知直线l的斜率为k,且经过点P1(x1,y1),求直线l的方程. 师:条件改得很好!能解决这个问题吗? 生:设P(x,y)为l上任意一点,根据经过两点的直线的斜率公式得:
师:在解决上面的两个问题中,大家都用到了k值,若k不存在的情况下其直线方程怎么表示? 生:若k不存在,则直线方程为x=0或x=x1.
师:很好!把上面的问题归纳一下,应分为几种情况加以考虑? 生:两种.
1)当k存在时,经过点P1(x1,y1)的直钱方程为y-y1=k(x-x1); 2)当k不存在时,经过点P1(x1,y1)的直线方程为x=x1.
师:总结得不错!通过总结,大家注意到,在运用方程y=kx+b和y-y1=k(x-x1)解决问题时的前提条件是k存在.另外要知道这两个方程之间的联系,即方程y=kx+b是方程y-y1=k(x-x1)的特殊形式,但两个方程表示的图形都是直线.为了以后应用起来方便,我们不妨给这两个方程分别取个名字.下面请大家集思广益,给这两个方程取个贴切、易记的名字.
生:直线方程y-y1=k(x-x1)是由直线上一点和直线的斜率确定的,因此,可以叫做直线方程的点斜式;直线方程y=kx+b是由直线的斜率和它在y轴上的截距确定的,所以,可以叫做直线方程的斜截式.
师:这两个名字都指出了方程存在的前提条件,因此,便于同学们理解和记忆,以后大家可以继续使用.下面请大家根据今天课上所讨论的内容解决有关问题.
例1 已知直线l的倾斜角为0°,求直线l经过一点P1(x1,y1)的方程.(打投影仪)学生口答:利用点斜式得直线l的方程是y=y1.
亿库教育网
亿库教育网
例2 已知直线l的倾斜角为90°时,求直线l经过一点P1(x1,y1)的方程.(打投影仪)学生口答:因为直线l的斜率不存在,所以经过点P1(x1,y1)的直线方程为x=x1.
例3 一条直线经过点P1(-2,3),倾斜角α=45°,求直线的方程,并画出图形.(打投影仪)师:这是课本的例题,解完后自行对照课本.(同时请一位同学板演)师:通过前面的学习和应用,请同学们总结一下,确定一条直线需要几个独立条件? 生:两个.
师:如果已知直线l过一点,能否确定直线在坐标系中的位置?
生:不能确定,可以得到无数条经过这一点的直线.(教师可以用电脑演示)
师:若只知道直线l的斜率呢?
生:可以得到无数条斜率相同的直线.(教师用电脑演示)师:像这样的问题在我们今后学完有关直线的问题以后再做进一步探讨.本节课需要大家理解;确定一条直线必须具备两个独立条件,并且会根据所给条件求出直线的方程.
下面,请大家回忆一下本节课所讨论的内容.
生:知道了直线方程的两种表现形式:点斜式、斜截式. 师:应用这两个方程时应注意什么? 生:注意方程存在的条件是k存在.
师:在今天这节课上,有的同学还提到了另外几种确定一条直线的条件,请同学们课下思考. 作业:第20页,练习1,2,3.
第26页,习题二:1,2(1)、(2)、(3). 设计说明
本节课的教学过程主要有以下几个部分:
1.复习引入,通过问题逐步引导学生发现方程y=kx+b与直线l的一一对应关系,从而为研究直线即可通过研究方程而得到.
2.提出问题:
1)确定一条直线需要具备几个独立条件? 2)根据条件求出直线的方程. 3.需猜想:
1)确定一条直线需要知道k、b即可;
2)确定一条直线需要知道直线l经过两个已知点; 3)„„
4.根据猜想:已知k、b,求直线l的方程;已知k,点P1(x1,y1),求经过点P1和斜率为k的直线方程. 5.得到直线方程的点斜式、斜截式及方程存在的条件.
6.已知一个条件,不能确定唯一的一条直线,进一步体会确定一条直线需要具备两个独立条件. 7.例题、小结、作业.
第一个环节的设计主要考虑了初、高中数学教材中相关知识点的衔接.因为搞好初、高中数学教学的衔接,从教学管理的角度看,适应学生的心理特征及认知规律.为此,从初中代数中的一次函数y=kx+b引入,自然
亿库教育网
亿库教育网
地过渡到本节课想要解决的问题,即求直线的方程的问题上去.在引入过程中,注意先帮助学生弄清直线与方程为一一对应关系,理解了要研究直线可从研究方程入手,以及要研究方程的特征,也可以从研究直线考虑,突出了解析几何研究问题的思想方法.
第二、三、四环节的设计体现了解析法的基本思想在于把几何问题代数化,图形性质坐标化,其框图如下:
考虑到传统的教学模式都是根据已知条件求结论,按照“MM教育方式”,应培养学生的探索性,因此在注重学生思维的科学性上,设计了根据直线这一结论,先猜想确定一条直线的条件是什么?然后再根据猜想得到的条件求直线的方程.从教学内容上没有脱离教材,但从教法上比较注重创设问题情境,揭示知识的形成发展过程,不仅要让学生知其然,更应让学生知其所以然,帮助学生把研究的对象从复杂的背景中分离出来,突出知识的本质特点,讲清知识的来龙去脉,揭示新知识(根据已知条件,求出直线的方程)的提出过程,使学生对所学知识理解得更加深刻.
关于直线的许多问题中,都要涉及到斜率和截距的问题,用斜率和截距来解决有关问题也是高中学生学习的需要.另外,在学生得出直线方程的点斜式和斜截式之后,教师要有意识地引导学生注意这两个方程的存在条件是k存在,若k不存在时应作为特殊情况加以考虑,在此涉及到了分类讨论的思想.
在高中数学中,用斜率和截距来解决直线及其方程的问题,其中以下两种题型必不可少. 1.已知直线方程研究其几何性质的问题
例1 如果AC<0且BC<0,那么Ax+By+C=0不通过[ ].
分析
由AC<0且BC<0可得 AB>0,直线 Ax+By+C=0的限,故选(C).
显然,直线的斜率和截距是刻画直线几何性质的,是研究这类问题的关键. 2.求直线方程
例2 在平面直角坐标系xoy中,过点P(-3,4)且与直线OP夹角
例3 过点(5,2)且在两坐标轴截距相等的直线方程是____.
亿库教育网
亿库教育网
分析 两坐标轴截距相等包含了两种情况:截距不为零,截距为
直线过原点和点(5,2),可求得直线方程为2x-5y=0,所以 所求直线方程为x+y-7=0或2x-5y=0.
例4 求过点P(0,1)的直线l的方程,使l夹在两直线l1∶x-3y+10=0与l2∶2x+y-8=0之间的线段恰被P点平分.
解 设过点P(O,1)的直线方程为y=kx+1(斜率k不存在时,显然不满足条件),与直线l1、l2分别交于A、B两点(如图1-19)
上述几例是用待定系数法求直线方程,解这类题的要点是:通过对已知条件的分析,寻求满足直线方程的两个独立条件,列出直线方程求待定系数.在使用直线方程时要注意,方程成立的条件,如点斜式、斜截式要求斜率存在,截距式要求截距不为零等.
为了使学生理解求一条直线的方程需要具备两个独立条件,在本节课的最后部分我们强调直线若满足一个条件,那么这条直线是不能唯一确定的,所以在直线这一章学完以后,还要准备适当地补充直线系的概念及直线系的基本类型题.
一般地,我们把满足一个共同条件的直线的集合(直线的系列)称为一个直线系,把满足直线系的方程叫做直线系方程.
直线系的基本类型有:平行直线系(直线系中的所有直线的斜率k是同一个常数);共点直线系(直线系中的直线都过同一个点).
引理
若两相交曲线为C1∶f(x,y)= 0,C2∶g(x,y)=0,则曲线系C∶f(x,y)+λg(x,y)=0(参数λ∈R),必通过C1与C2的所有的交点.
定理 已知两条相交直线l1∶a1x+b1y+c1=0和l2∶a2x+b2y+c2=0,则a1x+b1y+c1+λ(a2x+b2y+c2)=0是过l1和l2交点的直线系(不包括l2),式中的λ是一个任意实数.
例1 填写满足下列条件的直线系方程(1)斜率为-2的直线系方程是(y=-2x+b).
亿库教育网
亿库教育网
(3)经过点(-2,-3)的直线系方程是(y+3=k(x+2)或x=-2).
例2 应用上述定理,求经过l1∶2x-3y+2=0与l2∶3x-4y-2=0的交点,且分别满足下列条件的直线方程.(1)过原点;
(2)平行于直线2x-y-6=0;(3)垂直于直线4x+3y-4=0. 解
过l1、l2交点的直线系是:
l∶2x-3y+2+λ(3x-4y-2)= 0,① 即:(2+3λ)x+(-3-4λ)y+(2-2λ)=0,②(1)因为l过原点,所以2-2λ=0,λ=1代入②得: 5x-7y=0.
(2)因为 l平行于直线2x-y-6=0,2x-y-18=0.
(3)因为l垂直于4x+3y-4=0,所以4(2+3λ)-3(3+4λ)=0,即-1=0,此方程无解.
这说明①中不存在与直线4x+3y-4=0相垂直的直线,事实上,①不含l2,而l2恰恰是过l1,l2交点且与4x+3y-4=0垂直的直线,所以 所求直线就是l2∶3x-4y-2=0.
例3 不论 m取什么值,直线(2m-1)x+(m+3)y-m+11=0必过一定点,试证明之,并求此定点.
x=2,y=-3.
将x=2,y=-3代入直线系方程左边,则
(2m-1)·2+(m+ 3)·(-3)-m+ 11= 0,即证明直线系过定点(2,-3). 解法二
将原方程变形为:
(-x+3y+11)+m(2x+y-1)=0,这是经过以下两直线交点的直线系
解方程组,得这两条直线交点坐标为(2,-3),不论m取何值时,已知直线必过点(2,-3).
以上是教案设计过程中的几点说明,此外,在教学过程中还应重视数学思想方法和数学语言的教学.因为数学思想方法是数学知识的精髓,是知识转化为解决问题能力的桥梁.数学语言是进行数学思维和数学交流的工具,注重数学语言训练,有助于理解数学知识和方法,有助于数学交流,有助于学生的数学应用意识的培养.为此,本教案中涉及到了由特殊→一般→特殊的认知规律,运用了归纳、猜想等合情推理方法,在每个环节的设计中,要求学生对每一个问题都要独立思考,在学生遭遇挫折后,要引导他们进行正确归因,帮助他们找出症结,加强个别指导,激发不同层次的学生的学习兴趣.
亿库教育网
高一数学教学设计:《直线的点斜式方程》【第三篇】
学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。查字典数学网小编准备了高一数学教学设计,供大家参考!高一数学教学设计:《直线的点斜式方程》
一、内容及其解析1.内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线。2.解析:直线方程属于解析几何的基础知识,是研究解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。二、目标及其解析1.目标掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。2.解析①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想。④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想。⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想。三、教学问题诊断分析1.学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。2.学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质。3.由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的。四、教法与学法分析
1、教法分析新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采用启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。2、学法分析改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程。为学生形成积极主动的、多样的学习方式创造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力。五、教学过程设计问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?[设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。问题2:建立直线方程的实质是什么?[设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的坐标满足的条件用方程表示出来。引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?[设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。问题要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?(过与两点的直线的斜率为)[设计意图]让学生寻找确定直线的条件,体会动中找静。问题如何将上述条件用代数形式表示出来?[设计意图]让学生理解和体会用坐标表示确定直线的条件。用代数式表示出来就是,即。问题为什么说是满足条件的直线方程?[设计意图]让学生初步感受直线与直线方程的关系。此时的坐标也满足此方程。所以当点在直线上运动时,其坐标满足。另外以方程的解为坐标的点也在直线上。所以我们得到经过点,斜率为的直线方程是。问题:能否说方程是经过,斜率为的直线方程?[设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?[设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力。问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?[设计意图]引导学生掌握解析几何取点的方法。引导学生求出直线的点斜式方程注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?[设计意图]让学生初步感受解析几何求曲线方程的步骤。①设点---用表示曲线上任一点的坐标;②寻找条件----写出适合条件;③列出方程----用坐标表示条件,列出方程④化简---化方程为最简形式;⑤证明----证明以化简后的方程的解为坐标的点都是曲线上的点。例1分别求经过点,且满足下列条件的直线的方程,并画出直线。⑴倾斜角⑵斜率⑶与轴平行;⑷与轴平行。[设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作公式用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件。注:⑴应用直线的点斜式方程的条件是:①定点,②斜率存在,即直线的倾斜角。⑵与的区别。后者表示过,且斜率为k的直线方程,而前者不包括。⑶当直线的倾斜角时,直线的斜率,直线方程是。⑷当直线的倾斜角时,此时不能直线的点斜式方程表示直线,直线方程是。练习:1..2.已知直线的方程是,则直线的斜率为,倾斜角为,这条直线经过的一个已知点为。[设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程。问题6:特别地,如果直线的斜率为,且与轴的交点坐标为(0,b),求直线的方程。[设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程。将斜率与定点代入点斜式直线方程可得:说明:我们把直线与y轴交点(0,b)的纵坐标b叫做直线在y轴上的截距。这个方程是由直线的斜率与它在y轴上的截距b确定,所以叫做直线的斜截式方程。注(1)截距可取任意实数,它不同于距离。直线在轴上截距的是。(2)斜截式方程中的k和b有明显的几何意义。(3)斜截式方程的使用范围和斜截式一样。问题7:直线的斜截式方程与我们学过的一次函数的类似。我们知道,一次函数的图像是一条直线。你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?[设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质。函数图像是以形助数,而解析几何是以数论形。练习:1..2.直线的斜率为2,在轴上的截距为,求直线的方程。[设计意图]让学生明确截距的含义。3.直线过点,它的斜率与直线的斜率相等,求直线的方程。[设计意图]让学生进一步理解直线斜截式方程的结构特征。4.已知直线过两点和,求直线的方程。[设计意图]让学生能合理选择直线方程的不同形式求直线方程,同时为下节学习直线的两点式方程埋下伏笔。例2:已知直线,试讨论(1)与平行的条件是什么?(2)与重合的条件是什么?(3)与垂直的条件是什么?说明:①平行、重合、垂直都是几何上位置关系,如何用代数的数量关系来刻画。②教学中从两个方面来说明,若两直线平行,则且反过来,若且,则两直线平行。③若直线的斜率不存在,与之平行、垂直的条件分别是什么?练习:问题8:本节课你有哪些收获?要点:(1)直线方程的点斜式、斜截式的命名都是顾名思义的,要会加以区别。(2)两种形式的方程要在熟记的基础上灵活运用。总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。希望上面的高一数学教学设计,能受到大家的欢迎!
优质课直线方程的点斜式和斜截式教案【第四篇】
§直线方程的点斜式和斜截式
一、教学目标 1.知识与技能
(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程;(3)体会直线的斜截式方程与一次函数的关系。2.过程与方法
在已知直角坐标系内确定一条直线的几何要素—直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程,学生通过对比理解“截距”与“距离”的区别。3.情感、态度与价值观
通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形 结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。通过平行直线系,感受数学之美,激发学习数学的积极主动性。
二、教学重难点
1.教学重点:直线的点斜式方程和斜截式方程。2.教学难点:直线的点斜式推导过程中直线与方程对应关系的理解。三、教学过程
(一)设疑自探:预习课本P65-67,回答下列问题:
问题1:过定点P(x0,y0)的直线有多少条?倾斜角为定值的直线有多少条? 确定一条直线需要什么样的条件?
问题2:若直线l经过点P0(x0,y0),斜率为k, 这条直线上的任意一点P(x,y)的坐标x与y之间满足什么关系呢?所得到方程与直线l有什么关系 呢?由此你能推出直线的点斜式方程吗?
(二)自主检测:
1、(1)已知直线的点斜式方程是y-2=x-1,那么直线的斜率为___,倾斜角为___.(2)已知直线方程是xy10,那么直线的斜率为____,倾斜角为______.2、写出下列直线的点斜式方程:(1)经过点A(3,-1),斜率是2;(2)经过点B(2,2),倾斜角为30°;(3)经过点C(0,3),倾斜角是0°;(4)经过点D(-4,-2),倾斜角是120°.(三)例题解析
例
1、写出下列直线的方程,并画出图形:
(1)经过点P(1,3),斜率是1;(2)经过点Q(-3,1),且与x轴平行;(3)经过点R(-2,1),且与x轴垂直;(4)经过两点A(5,0),B(3,3).四、质疑再探:
1、根据例2思考讨论(1)什么是直线的斜截式?(2)b的几何意义是什么?
(3)由直线的斜截式方程你能想到我们学过的哪类函数,它们之间又有什么 关系呢?
(4)点斜式与斜截式有什么联系?在表示直线时又有什么区别呢?
例
2、如果直线l的斜率为k,且与y 轴的交点为(0,b),:你能求出直线l的方程吗?
变式:直线y=2x-3的斜率和在y轴上的截距分别为
2、根据例3思考讨论任何一条直线都能用点斜式或斜截式方程表示吗?
例
3、求过两点(m,2),(3,4)的直线的点斜式方程。(四)课堂小结:
1、通过本节课你学习到了那些知识?(1)直线方程的点斜式;(2)直线方程的斜截式;
(3)直线方程的点斜式和斜截式的关系以及适用范围。2、本节课用了哪些数学思想? 数形结合、分类讨论思想
(五)当堂演练:
1、已知直线l的方程为xyb0(bR),则直线l的倾斜角为()A、30 B、45 C、135 D、与b有关
2、过点P(2,0),斜率是3的直线的方程是()A、y3x2B、y3x2 C、y3(x2)D、y3(x2)
3、经过点(2,1),倾斜角为60的直线方程是()A、y13(x2)B、y1C、y13(x2)D、y13(x2)33(x2)
34、直线l的倾斜角为45,且过点(4,1),则这条直线被坐标轴所截得的线段长 是
5、求斜率为直线y3x1的斜率的倒数,且分别满足下列条件的直线方程。(1)经过点(4,1);(2)在y轴上的截距为10.