等差数列教学设计(4篇)
【导言】此例“等差数列教学设计(4篇)”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
等差数列教学设计【第一篇】
《等差数列》教学设计
设计思路 1.教法
①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.
③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点. 2.学法
引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.
教学过程
一:创设情境,引入新课
1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么
2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列
3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列
教师:以上三个问题中的数蕴涵着三列数. 学生:
1:0,5,10,15,20,25,…. 2:18,15.5,13,10.5,8,5.5. 3:10072,10144,10216,10288,10360.(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.
二:观察归纳,形成定义 ①0,5,10,15,20,25,…. ②18,15.5,13,10.5,8,5.5. ③10072,10144,10216,10288,10360.思考1上述数列有什么共同特点
思考2根据上数列的共同特点,你能给出等差数列的一般定义吗 思考3你能将上述的文字语言转换成数学符号语言吗
教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.
学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定. 教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.
(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)
三:举一反三,巩固定义
1.判定下列数列是否为等差数列若是,指出公差d.(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.
注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .(设计意图:强化学生对等差数列“等差”特征的理解和应用). 2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗为什么
(设计意图:强化等差数列的证明定义法)
四:利用定义,导出通项
1.已知等差数列:8,5,2,…,求第200项
2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢
教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.
(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题
1判断100是不是等差数列2,9,16,…的项如果是,是第几项 2在等差数列{an}中,已知a5=10,a12=31,求a1,d和求等差数列 3,7,11,…的第4项和第10项
教师:给出问题,让学生自己操练,教师巡视学生答题情况. 学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式
(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)
六:反馈练习:教材13页练习1 七:归纳总结: 1.一个定义:
等差数列的定义及定义表达式 2.一个公式: 等差数列的通项公式 3.二个应用: 定义和通项公式的应用
教师:让学生思考整理,找几个代表发言,最后教师给出补充(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)
设计反思 本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.
等差数列教学设计【第二篇】
《等差数列》教学设计
河北省卢龙职业技术教育中心
吕敬平
《等差数列》教学设计
一、教学内容分析
本节课是《中等职业教育改革国家规划新教材•数学》基础 模块第六章数列第二节等差数列第一课时。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
二、学生学习情况分析
我所教学的学生是我校高考班的学生,虽然经过一年的学习,但大部分学生知识经验还不丰富,跟他们基础和素质有很大关系,基础较弱,素质不高,学习数学的兴趣也不很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
三、设计思想 1.教法
⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。2.学法
引导学生首先从简单浅显问题(数数问题)、概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
用多种方法对等差数列的通项公式进行推导。在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学目标
知识目标:通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用。
能力目标:培养学生观察、分析、归纳、推理的能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
情感目标:在解决问题的过程中培养学生主动探索、勇于发现的求知精神;使学生认识事物的变化形态,养成细心观察、认真分析、善于总结的良好思维习惯。并通过一定的实例激发同学们的民族自豪感和爱国热情。
五、教学重点与难点
重点:
1、等差数列的概念。
2、通项公式的运用。
难点:
1、理解等差数列“等差”的特点及通项公式推导过程。
2、“数学建模”的思想方法。
六、突出重点 突破难点
1、等差数列的概念
由学生的总结自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。
思考并交流对概念的理解,并总结: ①“从第二项起”满足条件; ②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:(n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1).9,8,7,6,5,4,„„;√ d=-1
2).,,,,„„;√ d= 3).0,0,0,0,0,0,„„.;√ d=0 4).1,2,3,2,3,4,„„;× 5).1,0,1,0,1,„„×
其中第一个数列公差d0,第三个数列公差d=0 由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式
(1)若一等差数列{an}的首项是a1,公差是d,则据其定义可得: a2-a1=d 即:a2=a1+d a3-a2=d 即:a3=a2+d
„„
猜想: a49= a1+48d 进而归纳出等差数列的通项公式: an=a1+(n-1)d
设计思路:在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论的通项公式。通过总结的通项公式由学生猜想的通项公式,进而归纳出通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识,又化解了教学难点。
七、巩固新知应用例解
例1 已知等差数列的首项为12,公差为−5,试写出这个数列的第2项到第5项.
例2 求等差数列
1,5,11,17,...的第50项。例3 在等差数列an中,a10048,公差d,求首项a1.这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。
3八、反馈练习 巩固新知
1、已知an为等差数列,a58,公差d2,试写出这个数列的第8项a8.
2、写出等差数列11,8,5,2,„的通项公式和第10项。3、求等差数列2,1, 8 ,„的通项公式与第15项.
55目的:使学生熟悉通项公式,对学生进行基本技能训练和加强建模思想训练。
九、归纳小结、深化目标
1、等差数列的概念及数学表达式an-an-1=d(n≥1)。
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数。
2、等差数列的通项公式会知三求一。
3、用“数学建模”思想方法解决实际问题。
十、布置作业
课本习题6.2
等差数列教学设计【第三篇】
新蔡二高教学设计 年级:15级 学科:数学 主备课人:徐德功 日期 2017年12月5日 课题:高三数学一轮复习 等差数列 1.了解等差数列的通项公式an与前n项和公式Sn的关系. 三 维
1、知识目标 2.能通过前n项和公式Sn求出等差数列的通项公式an. 教 学 提高对等差数列的认识,优化解题思路、解题方法,提升数学表达的能
2、能力目标 目 力。标
3、德育目标 培养学生认识数学的美。重点:熟练掌握等差数列的性质运用。难点::解题思路和解题方法的优化。教学过程:知识精讲
一、基本概念、性质
1、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数d叫做等差数列的,2、等差中项:若三个数a,A,b组成等差数列,那么A叫做a与b的,即2A 或A。
3、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;
4、等差数列an的通项公式性质:(1)对于任意的整数p,q,r,s,如果pqrs,那么apaqaras(2)对于任意的正整数p,q,r,如果pr2q,则apar2aq(3)对于任意的非零实数b,数列{ban}是等差数列,则{an}是等差数列(4)已知{bn}是等差数列,则{anbn}也是等差数列(5){a2n},{a2n1},{a3n},{a3n1},{a3n2}等都是等差数列 5.等差数列an的前n项和公式Sn = 注:(1)、在通项公式与前n项和公式中,涉及五个量的关系,已知其中的三个量,可求其余两个量。(体现方程的思想)(2)、等差数列前n项和公式的特点是n为关于n的二次式,且无常数项。即:s
等差数列教学设计【第四篇】
“等差数列”教学设计
思考:同学们观察一下上面的这三个数列:5,10,15,20,… ①48,53,58,63 ②18,,13,,8, ③看这些数列有什么共同特点呢?(由学生讨论、分析)2.分析问题,形成概念
对于上面的几个问题,引导学生观察相邻两项间的关系,得到:
对于数列①,从第2项起,每一项与前一项的差都等于 5 ;对于数列②,从第2项起,每一项与前一项的差都等于 5 ;对于数列③,从第2项起,每一项与前一项的差都等于- ; 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上三组等差数列,它们的公差依次是5,5,-。3.合作探究,深化概念
提问:如果在与中间插入一个数A,使,A,成等差数列数列,那么A应满足什么条件?
由学生回答:因为a,A,b组成了一个等差数列,那么由定义可以知道:A-a=b-A 所以就有
由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b的等差中项。
不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。
如数列:1,3,5,7,9,11,13„中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。看来,则
从而可得在一等差数列中,若m+n=p+q下面学习等差数列的通项公式: 对于以上的等差数列,我们能不能用通项公式将它们表示出来呢?这是我们接下来要学习的内容。
⑴、我们是通过研究数列的第n项与序号n之间的关系去写出数列的通项公式的。下面由同学们根据通项公式的定义,写出这三组等差数列的通项公式。让学生分组讨论,教师个别指导经过分析写出通项公式: ①这个数列的第一项是5,第2项是10(=5+5),第3项是15(=5+5+5),第4项是20(=5+5+5+5),„„由此可以猜想得到这个数列的通项公式是
② 这个数列的第一项是48,第2项是53(=48+5),第3项是58(=48+5×2),第4项是63(=48+5×3),由此可以猜想得到这个数列的通项公式是
③这个数列的第一项是18,第2项是(=),第3项是13(=×2),第4项是(=×3),第5项是8(=×4),第6项是(=×5)由此可以猜想得到这个数列的通项公式是⑵、那么,如果任意给了一个等差数列的首项 引导学生根据等差数列的定义进行归纳:
和公差d,它的通项公式是什么呢?
(n-1)个等式
所以 何表
达
呢
„„
思考:那么通项公式到底如?
„„
通过学生分组讨论合作探究,以及教师引导下得出通项公式:由此我们可以猜想得出:以为首项,d为公差的等差数列的通项公式为:
(教师板书)
就 也就是说,只要我们知道了等差数列的首项和公差d,那么这个等差数列的通项可以表示出来了。
(探究性问题)引导学生动手画图研究完成以下探究:⑴在直角坐标系中,画出通项公式为的数列的图象。这个图象有什么特点?
⑵在同一个直角坐标系中,画出函数y=3x-5的图象,你发现了什么?据此说一说等差数列与一次函数y=px+q的图象之间有什么关系。
可以利用通项公式求出。经
分析:⑴n为正整数,当n取1,2,3,„„时,对应的过描点知道该图象是均匀分布的一群孤立点;
⑵画出函数y=3x-5的图象一条直线后发现数列的图象(点)在直线上,数列的图象是该一次函数当x在正整数范围内取值时相应的点的集合。于是可以得出结论:等差数列的图象是一次函数y=px+q的图象的一个子集,是y=px+q定义在正整数集上对应的点的集合。