《平行四边形的面积》的教学设计【精彩5篇】
【路引】由阿拉题库网美丽的网友为您整理分享的“《平行四边形的面积》的教学设计【精彩5篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
平行四边形的面积教学设计【第一篇】
教学内容:
《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。
教学目标
1、知识与技能
1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2)使学生理解转化的思想,初步学会运用转化法来解决问题。
3)培养学生的合作意识和自主探究解决问题的能力。
2、过程与方法
让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。
3、情感态度与价值观
通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。
教学重点、难点
教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
教学准备:
多媒体课件、平行四边形学具等。
教学过程:
一、设置悬念激发兴趣
师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?
[学情预设:摇头或不知道。]
(出示:中国版图)
师:请大家仔细观察,山西省近似我们学过的什么平面图形?
[学情预设:学生根据观察可能会说:四边形或平行四边形。]
师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?
[学情预设:学生可能会说:计算出这个平行四边形的面积,就可以知道山西省的面积有多大了。]
师:对,这节课我们就一起来研究“平行四边形的面积”。
(引出课题并板书:平行四边形的面积)
[设计意图:新课程指出:数学来源于生活。通过从生活情境中引入问题、设疑激趣,激起学生探究的欲望,直接引入研究课题。]
二、动手操作引发欲望
1、回忆平行四边形的底和高。
师:同学们,平行四边形有哪些特征,你们还记得吗?
[学情预设:
生1:平行四边形对边平行、对角相等。
生2:还有底和高。]
师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?
[学情预设:学生根据不同的高,找到所对应的底。]
师:由此,你发现了什么?
生:底要和高相对应。
师:对,这一点值得注意。
[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在探究之前,回忆平行四边形的有关知识,让学生找到此知识的原知识点,激发学生学习的兴趣,从而顺利的进行平行四边形面积计算公式的探究。]
2、第一次探究
师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。
(小组活动,教师巡视)
[学情预设:
生1:直接数。
生2:间接数。
生3:沿边上的高剪开。
生4:沿中间的高剪开。
生5:沿两边的高剪开。……]
师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。
(小组汇报)
[学情预设:
组1:用直接数方格的方法。]
[问题讨论:师抓住“不满一格的如何计算”这个问题,让小组展开讨论,从而初步渗透转化思想。]
师:哪个小组和他们的方法不一样?
[学情预设:
组2:间接数。
组3:沿边上的高剪开。
组4:沿中间的高剪开。
组5:沿两边的高剪开。……]
师:由此,你又发现了什么?
小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。
[设计意图:新课程倡导让学生在自主探索、合作交流、动手实践的基础上充分经历数学活动的过程,获得广泛的数学活动经验。所以我在这一环节就让学生自己经历探究的过程,得出多种方法,体会转化前后的这两种图形之间的联系与区别,为后面公式的推导做好铺垫。]
3、第二次探究
师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的方格纸数出来吗?
师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?
生:不能。
师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?
生:有。
[学情预设:学生利用学具验证自己的猜想:平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽]
(板书:长方形的面积=长×宽
平行四边形的面积=底×高)
师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。
[学情预设:学生汇报自学成果,教师板书字母公式。]
师:用字母表示平行四边形的面积公式:S=ah
小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的长方形,从而找到了计算平行四边形面积的方法。
即:平行四边形的面积=底×高
[设计意图:著名教育家布鲁纳指出:掌握基本的数学思想和方法能使数学更易于理解和更便于记忆。平行四边形面积计算方法的教学是进行数学思想方法教学的良好契机。在本环节中,我不只是满足于单纯的平行四边形面积计算方法的学习,更注重引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力。]
三、联系实际解决问题。
师:解决课前遗留问题:山西省的面积大约有多大?
[设计意图:数学来源于生活,又回归于生活。在解决问题的同时,渗透情感教育。]
四、课后延伸渗透转化
师:吉林省近似学过的什么平面图形?
生:三角形
师:会计算它的面积吗?(不会)我建议大家利用转化的思想方法下课后继续研究。
[设计意图:数学教育的价值目标不仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得数学的基本思想方法,并能灵活运用方法解决在以后的学习中遇到的问题,达到举一反三的效果,提高解决实际问题的能力。]
五、板书设计:
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
平行四边形面积教案【第二篇】
教学目标:
1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学重点:
1、掌握平行四边形的面积计算公式。
2、会计算平行四边形的面积。
教学难点:理解平行四边形面积公式的推导过程。
教具准备:课件,平行四边形的纸片。
学具准备:学习卡,每个学生准备一个平行四边形。
教学过程:
一、导入
1、观察主题图(课件出示),让学生找一找图中有哪些学过的图形。
2、观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
3、引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。
板书课题:平行四边形的面积
二、平行四边形面积计算
1、用数方格的方法计算面积。
(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。
(2)独立完成。
(3)汇报结果。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2、推导平行四边形面积计算公式。
(1)引导:如果不用数方格,那能不能计算出平行四边形的面积呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为长方形的面积=长×宽,
所以平行四边形的面积=底×高。
3、教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
4、出示例1。读题并理解题意。
三、巩固和应用
1、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形底越长,它的面积就越大( )
2、计算。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业:练习十五第1、2题。
六、板书设计
平行四边形面积的计算
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
《平行四边形的面积》教学反思
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
一、重在每个孩子都参与
本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和平行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和平移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
二、渗透“转化”思想,让所积累的经验为新知服务
“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的。什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!
平行四边形的面积教学设计【第三篇】
教学目标
1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。
2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。
教学重点、难点
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即平行四边形面积公式的推导。关键是通过“剪、移、拼”将平行四边形转化成长方形后,找出平行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解平行四边形面积的推导过程。
教具、学具准备
多媒体课件,平行四边形纸片三个、直尺(三角尺)、剪刀、平行四边形图片一个。
教学过程
一、创设情境,抽取方法、导入新课
1、师:同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)
师:老师今天也带来了两个图形,但并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。
学生思考、回答:
(1)数格子的方法:一样大。
(2)把第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。
动画演示割补的过程。
师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的长方形,从而可以快捷顺利地比较它们的面积——这种方法在数学上叫做“割补——转化”法。“转化”是数学上的一种非常重要的思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?
既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积:
这是个什么图形?(平行四边形)板书课题。
二、应用方法,动手操作,探究新知
1、预设问题:
怎么就能计算出它的面积呢?(学生思考1分钟。)为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。
2、探究公式:
(1)出示问题:
师:先看老师给大家的几个提示(师读提示):
友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:
①平行四边形可以转化成学过的哪种图形?
②平行四边形的底和高分别与转化后的图形有什么关系?
③怎样通过转化后的图形推导出平行四边形的面积计算方法呢?
(学生在独立思考的基础上进行合作探究)
(2)现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?比一比哪个小组最快研究出来。
(3)小组探究。
(4)组间展示交流:
师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线剪的?)
师:谁还有不同的剪法?
动画展示割补——转化的过程:
(其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)
(4)师生交流提炼,形成板书:
师生总结:不管利用哪种割补方法,我们都能把平行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于平行四边形的底,长方形的宽就等于平行四边形的高。根据长方形面积的计算方法,我们就可以得出平行四边形面积的计算方法:
师:计算平行四边形面积,必须知道什么?(底和高,缺一不可。)
3、教学例1:
师:我们利用这个成果来解决一个问题好吗?
出示例1:
学生回答,教师板书:S=ah=6×4=24(cm2)
4、巩固小结:
通过这节课的研究,我们发现平行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了平行四边形面积公式:平行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。
三、分层训练,巩固内化
1、求下面的平行四边形的面积,只列式不计算:
(第三个图形计算中提问:还可以怎么计算?用12×行不行?强调底与高的对应)
2、慧眼识对错:
(1)一个平行四边形的底是20厘米,高是1分米,它的面积是20平方厘米。()
(2)平行四边形的底越长,面积就越大。()
(3)下面平行四边形的面积是:8×5=40(平方厘米)()
(4)一个平行四边形的面积是36cm2,底是9cm,那么它的高是4cm。()
3、老师最近买了一辆新车,想买一个停车位,选中了一个平行四边形的,停车位的价格是每平方米5000元,老师一共需要付多少钱呢?
要计算付多少钱,需要先怎么办呢?(测量长和宽,计算停车位的面积),老师已经测量好了,(出示数据:底3米,高5米)你们帮老师算算钱数好不好?
学生计算、展示。
师:谢谢你们帮我算出了应付的钱数,我回家就可以准备了。
4、为了方便行人,某小区需要在一片绿化带中修一条平行四边形小路,路宽,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪的面积最小?你想到了什么?
四、课堂小结:
师:这节课你有什么有收获?
师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。
板书设计
平行四边形面积教案【第四篇】
教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感
教学重点:
让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
教学难点:
让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。
教学准备:
平行四边形卡片、剪刀、三角板
教学过程:
一、课前复习,回顾旧知
1、 长方形面积公式是什么?(勾起学生对已有知识的回顾,为学习平行四边形面积公式做铺垫)
2、 生:长方形面积=长×宽。
二、提出问题,导入新课
1、出示主题图:(看课本第86页的图)
(1)、发现了哪些图形?你会求哪些图形的面积?
(2)、故事引入
学校门前有两个大花坛,左边的是长方形的,右边的是平行四边形的。现在准备把花坛里面的草换成美丽的蝴蝶花,这个分别交给五(1)班和五(2)班负责。这时同学们争论开了,有的同学说长方形的面积大,有的说平行四边形的面积大,又有的同学说“还不是一样大嘛?”同学们,今天就让我们来帮帮他们判断一下哪个花坛的面积大。
师:我把花坛缩小成我手上的图形(出示缩小的两个图形,让学生比较)
比较方法:
1、叠起来比;(比不了,形状不一样)
2、数方格比。
师:平行四边形的面积还有其它数法吗?(引出转化成长方形的方法)在实际问题上,这种方法行吗?不行,麻烦而且不实际,能不能像计算长方形面积那样计算出来呢?今天,就让我们来探讨平行四边形的面积的计算方法。(板书课题)
三、探索发现、推导公式
1、猜想:平行四边形的面积跟什么有关系呢?(板书:底和高;两条边)
2、验证:科学是从猜想到验证的一个过程,现在就让我们用事实来说话吧。
课本中的同学们也忙开了,让我们来看看他们在干什么?打开88页,看看课本上半页的图。他们在干什么呢?(把平行四边形剪拼成长方形)
现在,同学们也用剪拼的办法,把平行四边形转化成长方形,每个学习小组长的手上都有一个平行四边形,每个小组的同学合作,剪一剪,拼一拼,看看那组的同学合作最好,先来看看我们的导学提纲。
小组根据导学提纲进行合作学习
(1)怎样把平行四边形纸片剪一刀,拼成一个长方形呢?(剪前,小组要先讨论出怎样剪,拼成的才一定是长方形。)
(2)讨论:平行四边形转化成长方形后面积变了吗?
(3)讨论:转化成的`长方形的长和平行四边形的底是否相等?
(4)讨论:转化成的长方形的宽和平行四边形的高是否相等?
3、学生操作验证
师:这个剪拼的任务就交给你们了。
4、交流汇报
(1)生1:先在平行四边形上画一条高,沿着高剪开,把平行四边形分成了一个三角形,一个梯形,然后把三角形向右平移,拼成了长方形。
生2:在平行四边形上画一条高,然后沿高剪开,分成了两个梯形,然后把左边的梯形向右平移,拼成了长方形。
师:这样的变化过程在数学上叫做“转化”,平行四边形转化成长方形。
(2)面积没变,只是形状变了。
(3)长方形的长和平行四边形的底相等。
(4)长方形的宽和平行四边形的高相等。
(5)平行四边形的面积怎样算?
5、集体推导
齐看演示剪拼的过程,学生自己口头作答,再齐读。(老师边讲解边板书)
一个平行四边形沿着任意一条高剪开,都可以拼成一个(长方形),它的面积与平行四边形的面积(相等),这个长方形的长与平行四边形的(底)相等,这个长方形的宽与平行四边形的(高)相等,因为长方形的面积=(长 X 宽),所以平行四边形的面积=(底 X 高)。
板书:长方形的面积 = 长 X 宽
↓ ↓ ↓
平行四边形的面积 = 底 X 高
6、字母表示公式
师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h(师板书)(在课本划出公式,读公式)
7、回到学生们的猜想,平行四边形的面积是跟底和高有关系。我们也可以用计算的方法来求出平行四边形的面积了。
师:同学们多了不起啊,自己实践得出了真理,科学就是这样一步步的向前推进的。
8、运用公式:学习88页例1
师:让我们回到学校门前的花坛吧。
出示题目,学生读题,学生口答,老师板书过程。
9、回到同学们的争论,两个花坛的面积是一样大的,科学实践还是解决争论的最好办法。
三、巩固拓展
1、课本89:第1题。(学生在练习本中解答)
2、口答:下面的平行四边形的面积是多少平方厘米?
3、选择题:(区分对应的底和高)
4、实际应用:课本89:第4题第1个图(先量出底和高,再计算) 求楼梯扶手的面积。
5、口答
(1)平行四边形的底不变,高扩大2倍,面积就( )。
(2)平行四边形的高不变,底缩小2倍,面积就( )。
(3)平行四边形的底扩大2倍,高也扩大2倍,面积( )。
四、总结全课,提高认识
1、通过今天的学习,你有那些收获?还有那些遗憾的地方?
2、今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学以致用。
板书设计:
平行四边形的面积
长方形的面积 = 长×宽
↓ ↓ ↓
平行四边形的面积= 底×高
S = a×h
平行四边形的面积教学设计【第五篇】
教学内容:
人教版小学《数学》五年级上册,平行四边形的面积。
教学目标:
1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重点:探索并掌握平行四边形的面积计算公式。
教学难点:理解平行四边形的面积计算公式的推导过程。
教学过程:
一、巧设情境,铺垫导入
师:(在实物投影仪中出示教具,如下图)这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的?
(根据学生的回答,教师适时板书:长方形的面积=长×宽)
师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示,如下图)同学们看看,现在变成了什么图形?(平行四边形)
师:这样一拉,形状变了,面积变了吗?
师:(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的?
(平行四边形的面积等于相邻两条边的乘积)
师:究竟这个猜想是否正确,下面我们一齐来验证一下就知道了。
请同学们用数方格的方法来算出这个平行四边形的面积,(教师把拉成的平行四边形框架放在方格纸上,用实物投影仪显示,如下图)数的时候要注意,每个小方格的面积是1cm2,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是32cm2,使学生明确 。拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积。
师:看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算吧。(板书课题:平行四边形的面积)
二、合作探索,迁移创造
1、图形转换
师:(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?(能)可以转换成什么图形?(长方形)
师:四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作)
2、探讨联系
师:同学们真能干,很快就把平行四边形转换成了长方形,请大家认真观察,转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽有怎样的联系?(小组讨论交流,引导学生边动手操作边观察,从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。)
师:(结合黑板上的图形说明)这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
3、推导公式
师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积等于底乘高)
(教师根据学生回答板书:平行四边形的面积=底×高)
师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)
(教师根据学生回答板书:S=ah)
4、验证公式
师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,用实物投影仪显示)请同学们利用刚才推导出来的平行四边形面积公式来计算这个平行四边形框架的面积。(先让学生明确这个平行四边形的底和高各是多少,再列式计算。)
师:计算出来的结果和我们数方格得出的结果一样吗?(一样)
师:这证明我们所推导出来的平行四边形面积公式是正确的。
5、提问质疑
师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)
三、层层递进,拓展深化
1、算一算
师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)
2、选一选
师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)
3、画一画
师:请同学们在方格纸上画出一个面积是24 cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是1cm,要求学生想清楚该怎样画,再动手画一画。)
4、想一想
师:(课件出示如下图)学校里有一块草地,想在草地的一边修一条小路通向另一边,下面的有三种设计方案,你认为哪种设计方案的面积最小?为什么?(先小组讨论,再让学生自由地发言,引导学生从平行四边形的面积计算方法来思考问题。)
师:你发现了什么规律?(引导学生理解等底等高的平行四边形
面积相等。)
四、总结全课,提高认识
回顾刚才我们的学习过程,你有什么收获?
教学反思:
本设计巧妙地利用学生计算长方形面积的经验设置悬念,整个过程引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程,充分体现了“学生是数学学习的主人”的全新教学理念。全程层层推进,环环相扣,流畅又不失创新特色。主要体现以下两个特点。
1、前后呼应,浑然一体
利用长方形框架巧设情境,复习长方形的面积计算方法,为平行四边形的面积公式推导作铺垫,然后把长方形拉成平行四边形,向学生提问:面积变了吗?引起学生的好奇与争议,以此为契机,再用数方格的方法来证明平行四边形的面积等于相邻两条边的乘积是错误的,激发学生进一步探讨平行四边形的面积计算的求知欲望。
把平行四边形的面积公式推导公式出来以后,让学生再一次验证公式,这一过程前后呼应,浑然一体,培养了学生严谨的科学态度。
2、合作探索,迁移创造
在推导平行四边形的面积过程中,教师给予学生充分的时间和空间,通过学生动手操作与合作交流,使学生主动地探索和发现平行四边形面积的计算方法。在这过程中,学生议论纷纷,各抒己见,主体地位发挥得淋漓尽致,充分体现了“学生是数学学习的主人”的全新教学理念,同时,点燃了学生。