首页 > 学习资料 > 教学设计 >

高中数学教学设计优推4篇

网友发表时间 1009647

【导言】此例“高中数学教学设计优推4篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

高中数学教学设计【第一篇】

教学目标:

1.掌握基本事件的概念;

2.正确理解古典概型的两大特点:有限性、等可能性;

3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.

教学重点:

掌握古典概型这一模型.

教学难点:

如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题。

教学方法:

问题教学、合作学习、讲解法、多媒体辅助教学.

教学过程:

一、问题情境

1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?

二、学生活动

1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;

2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;

(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,

这6种情况的可能性都相等;

三、建构数学

1.介绍基本事件的概念,等可能基本事件的概念;

2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);

3.得出随机事件发生的概率公式:

四、数学运用

1.例题

例1

有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)

探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)

探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?

学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.

探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.

(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)

例2

一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中

一次摸出2只球,则摸到的两只球都是白球的概率是多少?

问题:在运用古典概型计算事件的概率时应当注意什么?

①判断概率模型是否为古典概型

②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.

教师示范并总结用古典概型计算随机事件的概率的步骤

例3

同时抛两颗骰子,观察向上的点数,问:

(1)共有多少个不同的可能结果?

(2)点数之和是6的可能结果有多少种?

(3)点数之和是6的概率是多少?

问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?

学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.

问题:点数之和是3的倍数的可能结果有多少种?

(介绍图表法)

例4

甲、乙两人作出拳游戏(锤子、剪刀、布),求:

(1)平局的概率;

(2)甲赢的概率;

(3)乙赢的概率

设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.

2.练习

(1)一枚硬币连掷3次,只有一次出现正面的概率为_________

(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________

(3)第103页练习1,2.

(4)从1,2,3,…,9这9个数字中任取2个数字,

①2个数字都是奇数的概率为_________;

②2个数字之和为偶数的概率为_________

五、要点归纳与方法小结

本节课学习了以下内容:

1.基本事件,古典概型的概念和特点;

2.古典概型概率计算公式以及注意事项;

3、求基本事件总数常用的方法:列举法、图表法.

高中数学教学设计【第二篇】

教学准备

教学目标

1、掌握平面向量的数量积及其几何意义;

2、掌握平面向量数量积的重要性质及运算律;

3、了解用平面向量的数量积可以处理垂直的问题;

4、掌握向量垂直的条件。

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学过程

1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,

则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。

并规定0向量与任何向量的数量积为0。

×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

2、两个向量的`数量积与实数乘向量的积有什么区别?

(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。

(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替。

(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0。因为其中cosq有可能为0。

高中数学教学设计案例【第三篇】

本人任教高中数学新课程已有三年,通过实践,对高中新课程的教学理念有了进一步的了解,对新课标下的具体教学实施有了一些经验或想法。以下就是自己在新课改背景下,对一些教学内容所做的思考与体会。

一、将数学教学内容的学术形态转化为学生易于接受的教育形态

在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角” 的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫做1弧<>度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。在课堂教学中,可采用如下设计的教学过程。

1、创设故事情境

一个生病的小男孩得知自己的体温是“102”时,十分忧伤地独自一个人躺在床上“等死”。而他的爸爸对此却一无所知,他以为儿子是想休息,所以才没有陪伴他,等他从外面打猎回来,发现儿子不见好转时,才发现儿子没有吃药。一问才知道,他儿子在学校里听同学说一个人的体温是“44”度时就不能活。当爸爸告诉他就像英里和千米一样,有两种不同的体温测量标准,一种37度是正常,而另一种98度是正常时,他才一下子放松下来,委屈的泪水哗哗地流下来。 在生活、生产和科学研究中,一个量可以有几种不同的计量单位(老师可以让学生说出如长度、面积、质量等一些量的不同计量单位),并指出对于“角”仅用“度”做单位就很不方便。因此,我们要学习角的另一种计量单位――弧度。如此引入很。自然引出或鼓励学生猜测“角”还有没有其他度量方式,从而开启思维的闸门。

2、探索角新的度量方法

可从两种度量实质上的一致之处开始探索:拿两个量角器拼成一个圆,可以看出圆周被分成360份,其中每一份所对的圆心角的度数就是1度,然后提出问题“拿”圆上不同的圆弧,度量圆周时,得到的数值是否一样? 为了探索这个问题,把学生分成若干小组,思考下列问题:

① 1度的角是如何规定的?

② 用一个圆心角所对的弧长来度量一个圆心角的大小是否可行?同一个圆心角在半径不等的圆中所对弧长相等吗?

③ 用一个圆的半径来度量该圆一个圆心角的大小是否可行?其值会不会由于圆半径的变化而变化?

④ 如何定义圆心角的大小?说明这种度量的好处。

要求学生分组讨论以上问题,写出结果,在班内交流结果,师生共同确定答案。

这样处理可将弧度概念与度量有机结合起来,有效化解难点,在探索中又注重课堂交流能力的培养,使学生在不断的交流中逐渐明晰自己的思路。

二、由重结果走向重过程

新的课程标准不仅强调基础知识与基本技能的获得,更强调让学生经历知识 的形成过程,以及伴随这一过程产生的积极的情感体验和正确的价值观。

[案例2] 等比数列的前n项和公式的探求。

为了求得一般的等比数列的前n项和,先用一个简捷公式来表示。

已知等比数列{ an}的公比为q,求这个数列的前n项和sn。即sn=a1+a2+a3+an

(1)知识回顾。

类比学过的等差数列的前n项和公式,不难想到等比数列前n项和sn也希望能用a1、an,n或q来表示。

请同学们回答:对于等比数列,我们已经掌握了哪些知识?

①等比数的定义,用式子表示为:

②还可以用 一系列整式表示:

a2=a1q

a3=a2q

a4=a3q

an =an-1q

③等比数列的通项公式:n= (n≥2)

(2)新知探求

联想等差数列的前n项和推导方法,问:等比数列前n项的和是否也能用一个公式来表示?

(这是学生完成知识形成过程的重要一步,应留出充分的时间让学生研究和讨论。)

要用a1、n、q来表示sn=a1+a2+a3+an应先将a2,a3,an用a1、n、q来表示。

即:sn=a1+a1q+a1q+a1qn-1

注意观察每项的结构:每项都是它前面一项的q倍,能否利用这个q倍,对sn化简求和?

(经过一番思考)对sn两边分别乘以q,再与原式相减。经师生共同努力,完成推导过程。

方法一:用“错位相减法”推导

方法二:用“迭加法”推导

方法三:用“等比定理法”推导

这样设计推导方法加强了知识形成过程的教学,培养了学生的发散思维,既关注了学生知识与技能的理解和掌握,更关注了学生情感与态度的形成和发展。而传统教学往往以最快的速度给出公式,然后通过例题演练学生,这样教学结果往往使学生死背公式,而不能灵活运用公式解决问题。

高中数学单元教学设计【第四篇】

一、目标

1.知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2.过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3情感、态度与价值观

学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

三、学法与教学用具

学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

四、教学思路

(一)、问题引入 揭示题

例1 尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的算法。

(二)、观察类比 理解题

1、 投影介绍流程图的符号、名称及功能说明。

符号 符号名称 功能说明

终端框 算法开始与结束

处理框 算法的各种处理操作

判断框 算法的各种转移

输入输出框 输入输出操作

指向线 指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条进行判断决定后面的步骤的结构

流程图:

3.用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式 求s

③输出s

流程图

(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

① 输入X值

②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作 经历题

1.用流程图表示确定线段的一个16等分点

2.分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

流程图:

(四)归纳小结 巩固题

1.顺序结构和选择结构的模式是怎样的?

2.怎样用流程图表示算法。

(五)练习P99 2

(六)作业P99 1

相关推荐

热门文档

22 1009647