数学五年级上册《可能性》教学设计【最新4篇】
【前言导读】此篇优秀范文“数学五年级上册《可能性》教学设计【最新4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
《可能性》教学设计【第一篇】
背景:课标把“统计与概率”作为四大内容之一,并在第一学段就对可能性作出了明确的要求:
1.初步体验有些事件的发生是确定的,有些则是不确定的。
2.能够列出简单试验所有可能发生的结果。
3.知道事件发生的可能性是有大小的。
4.对一些简单事件发生的可能性作出描述,并和同伴交换想法。
概率发生的基础是随机现象,这就涉及到确定事件(肯定与不可能两种,概率分别是1和0)与不确定事件,在不确定事件中,有很多种可能出现的结果,虽然每种结果都是随机出现的,但出现的次数在统计上存在一定的规律性(这也决定了概率与统计是不可分的,在本册教材中也基本上是以实验数据的统计为基础来探讨可能性的大小),概率就是以此为基础进行数学定义的:某一结果发生的次数占所有可能结果发生的总次数的比。要注意的是,概率是一个人为定义的概念,实验结果只能作为一种辅助的证明手段,严格的概率只能通过公式求得。
在本册,还不是要精确地计算某个结果发生的可能性,只是对可能性的大小有个初步的理解和判断就可以了。
一、教学内容
1.事件的确定性和不确定性
2.可能性的大小(两种结果、三种结果)
二、教学目标
1.使学生初步体验事件发生的确定性和不确定性。
2.使学生学会列出简单试验所有可能发生的结果。
3.使学生知道事件发生的可能性大小是不同的,能对一些简单事件发生的可能性大小进行比较。
三、编排特点
1.选取学生熟悉的生活情境帮助学生理解抽象的数学知识。
主题图选取学生熟悉的抓阄表演节目的活动。
例2选取了学生熟知的自然现象来描述事件的确定性与不确定性。
2.设计丰富的游戏活动,使学生通过观察、猜想、实验验证等过程来体会可能性大小。
摸棋子、摸球活动、转盘游戏、涂色活动、掷硬币、猜硬币游戏、抽签游戏。
四、具体编排
1.主题图
提供了一个抓阄表演节目的情境,学生都非常熟悉。通过贴近学生生活的游戏活动,学生很容易理解在抓阄过程中,抓到的结果是不定的。如果预先知道哪种节目的纸条多,学生也能初步感知自己表演哪种节目的可能性大。
教师还可以利用买体育彩票、抽奖等现实题材来引入可能性的内容。
2.例1(确定事件与不确定事件)
(1)通过摸球活动让学生体验肯定、不可能与可能等概念。虽然肯定与不可能都是确定事件,但不要求学生掌握这一点,只要能用上面三个词描述一下就可以了。
(2)教学时,可以让学生先猜测,再用实验验证一下,并用自己的语言叙述一下判断的理由。
(3)提问的方式可以多样。可以像教材上说的“哪个盒子肯定能摸出红棋,不可能摸出绿棋,可能摸出绿棋?”也可以问“第一个盒子肯定能摸出什么颜色的棋子,不可能摸出什么颜色的棋子?第二个盒子不可能摸出什么颜色的棋子,可能摸出什么颜色的棋子?”(最后一问也是为后面列出所有可能结果做准备。)
3.例2
借助于生活中的自然现象使学生进一步巩固对确定事件、不确定事件的理解。因为这些都是学生利用常识就能判断的,所以教材上只给出一个答案,让学生判断其他几个事件。
4.例3(比较两种结果的可能性大小)
(1)两个层次:列出所有的可能结果,比较这些结果出现的可能性大小。
(2)通过先观察、猜测,再用小组实验验证的方式来展开活动。
(3)实验时要注意以下几点:
a.实验所用的东西除了颜色以外,其他特性完全一致,否则不能保证结果的随机性。
b.要有足够多的实验次数,这样才有统计学的意义。
c.每一次实验的状态都一样(摸出的球要放回去)。
(4)实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝棋的次数比红棋多。
(5)出示两组的实验结果,虽然两组的数据不一致,但呈现的规律是相同的,在这儿,其实也是让学生巩固收集数据的过程。
(6)教学时可以问一下学生,为什么都是摸出蓝棋的次数比红棋多,引导学生把摸出某种结果次数的多少和棋子的数量多少联系起来,这就可以了。
(7)最后提问“再摸一次,摸出哪种颜色棋子的可能性大?”实际就是利用前面的统计结果所表现出来的趋势进行判断(在二年级下册的统计部分已经学习了利用统计结果进行预测),虽然摸出蓝球的可能性大,但在实际操作时,由于单次实验的结果是随机的,如果是一个小组摸的话,摸出来的结果仍可能是红球,此时,可以让所有小组同时摸一次,看摸出来的红棋多还是蓝棋多。
5.“做一做”
利用转盘游戏,可以先让学生不转圆盘来判断,通过摸棋子游戏的类推,让学生把指针停留在哪种颜色的可能性大小和不同颜色占整个圆面的区域大小联系起来。如果学生发现不了这一结论,可以让学生通过实验来验证。实验时同样要注意几点:圆盘的重心正好在中心,以使转动后停留在任意位置的机会均等,实验的次数要足够多。
6.例4(三种结果的可能性大小)
此时,可以不用实验加以验证,直接让学生运用例3的知识加以类推,直接判断。
7.例5(可能性大小的逆向思考)
通过不同结果出现的次数多少来判断不同颜色棋子数量的多少,主要是让学生作理论的思考。也可以让学生验证一下,如小组内先由两人把不同数量的两种颜色的球(或棋子)放进纸袋或盒子,让另两人摸,根据摸的结果来判断哪种颜色的球多,再来验证一下。
8.“做一做”
左图每种颜色都在一起,右图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。教学时教师也可以利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。
8.练习二十四
第2题,是一种逆向思维。并体现开放性,如第2小题,只要不涂蓝色,就能满足条件。第3小题,只要涂黄色的数量在1个到4个之间,都满足条件。
第3题,让学生利用生活经验说说生活中的确定事件和不确定事件。
第4题,编排意图和第2题相同。
第5题,通过实验来巩固可能性的大小。
第6题,渗透等可能性,在这儿只是让学生初步感受一下,而且两面朝上的学生人数不一定很接近,都没关系。(因为掷硬币这一事件的独立性和随机性,全班每人掷一次和每人掷很多次的效果是一样的。)
第7题,其实是把可能性和某种颜色的球在所有球所占的比例联系起来(第一个盒中是2/15,第二个盒中是9/15),在这儿,两个盒里的球的总数相等,所以绿球占的比例大小与绿球的数量是一致的。学生只要能用自己的语言大致说出道理来就可以了,不必分析以上原理。
第8题,让学生列出所有可能出现的结果,并初步体会每面朝上的可能性是相等的。
第9题,与主题图相对应,借助于学生熟悉的活动理解可能性的大小,把可能性的大小与每种签的数量对应起来。
第10题,变换形式,让学生巩固可能性的大小,其中隐含了“每个人猜哪个盒里有硬币这一事件是随机的”这一原理。
第11题,可能性大小的逆向思考的练习,又体现开放性,只要红色比蓝色多就可以。
第12题,可能性大小的逆向思考的练习,又体现开放性,只要保证10张卡片中“1”的张数最多,“5”的张数最少即可。
五、教学建议
1.引导学生借助观察、猜测、实验等来体验事件的确定性与不确定性,感受可能性的大小。
但也要注意一点,虽然在这儿都是借助于实验来验证,但也要逐渐引导学生从实验结果所呈现的规律性来认识可能性的大小与某一结果次数占总结果次数的比例之间的关系,逐渐过渡到从理论的角度来加以判断。
2.把握好教学要求。
只要学生有初步的体验就可以了,对于确定事件、不确定事件、等可能性以及概率的具体值,还不要求。
《可能性》教学设计【第二篇】
教学内容:
人教版义务教育课程标准实验教材五(上)第99-100页。
教学目标:
1、体验事件发生的等可能性以及游戏规则的公平性及它们的关系,会求简单事件发生的可能性。
2、能根据指定的要求,设计公平的游戏方案。能对简单事件的可能性做出预测。
3、培养概率素养,增强对随机思想的理解。培养公正、公平的意识,促进正直人格的形成。
4、在游戏中体验学习数学的乐趣,提高学生学习数学的积极性。
教学重点:体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。
教学难点:用分数表示可能性的大小。对随机思想的理解。
学情分析:
学生在三年级上册已经初步体验有些事件发生是确定的,有些则是不确定的,并能用"一定""不可能""可能""经常""偶尔"等恰当的词语来描述事件发生的可能性的大小。学生对简单的分数已经有了初步的认识,并且系统的学习了有关小数的知识,知道小数与分数之间的关系。学生除了已经具备相应的知识基础以外,在生活中学生经常用石头剪刀布或掷色子等游戏规则来玩游戏,所以生活经验也是丰富的。本课就是在学生具备了以上知识基础和生活经验的基础上进行教学的,使学生对"可能性"的认识和理解逐步从定性向定量过度,不但能用词语表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。
教学过程:
一、玩游戏引入。
游戏规则:双方轮流按顺序报数,每人每次最多只能报2个数,谁抢到6,谁就是赢家。通过游戏,学生发现秘密:谁先报数就一定会输。
师:用什么办法决定让谁先报数才算公平?
预设:石头剪刀布、丢硬币、转转盘、掷色子……
理念:游戏导入,激发兴趣,同时让学生带着如何让游戏更公平的任务研究数学问题,培养公正、公平的意识。用一个游戏贯穿整节课始终,让游戏和学习自然的结合在一起,更能让学生体验到学习数学的乐趣。
二、研究游戏学习新知。
(一)研究丢硬币体验等可能实事件
师:丢硬币公平吗?为什么?(正面朝上与反面朝上的可能性都是一样)
师:这节课我们来研究在不确定现象中可能性大小问题。(揭题)
师:可能性的大小,我们可以用数来表示。谁知道掷一枚硬币正面朝上的可能性是多少?(,%,)
师:为什么可以用这些数表示?(都表示一半)
师:如果用表示,那么分母2表示什么?分子1又表示什么呢?
师:掷一枚硬币,正面朝上的可能性是,反面朝上的可能性是多少呢?()
师:现在你能进一步来分析丢硬币是公平的吗?
师:估计掷10次、30次、50次硬币,正面朝上可能会有几次?
师:你估计的理由是什么?(5÷10=,15÷30=,25÷50=)
师:下面我们就来验证一下,结果会不会是这样。
操作要求:1、同桌合作,一人掷硬币20次,另一人记录正面朝上和反面朝上的次数。2、试验结束后,前后桌合作,统计共掷硬币40次正面朝上的次数。
3、小组长用计算器计算正面朝上的次数除以40的商
师:把我们的比较结果与比较,你有什么发现?
出示一组数学家研究的数据
师:现在你又有什么发现?
师:实际操作的结果跟可能性大小往往会有差距,但是通过大量的实验后,实际操作的结果就会很接近,如果试验的次数再不断增加,就会越来越逼近。
师:数学家抛了八万多次,老师计算了一下,如果每5秒钟抛一次,也要五天五夜不吃不睡什么都不做的去抛,如果要过正常人的生活最少也要10天,想到这里时,老师就被数学家身上所散发出来的一种东西感动了,你知道是什么东西感动了我妈?
理念:由掷硬币引入,让学生知道可以用数来表示不确定事件发生的可能性大小。通过动手实验和数学家的实验数据,体验频率与概率的关系,让学生初步感知用数表示可能性大小的意义,并能对简单事件的可能性做出预测。
(二)探究游戏规则的公平性
①研究转转盘
师:刚才我们通过研究,用掷硬币的方法决定谁先报数是公平的,下面我们就来玩一玩。在玩之前,老师想把同学们分为n组,再从其中的一组中选一名代表与老师比赛。(几组要看班级具体的人数而定,选代表时,可以课前把学生的名字写在纸条上,再用抽签的方法选出代表)
出示:(略)
师:用这个转盘公平吗,为什么?(事件发生的可能性大小不同,造成游戏的不公平)怎样比较公平?
出示:(略)
师:这样公平吗?那你觉得现在你们组被抽中的可能性是多少?分子分母各表示什么?(用转盘确定了一组)
②研究抽签
师:由于课堂时间有限,我觉得跟一大组人玩还比较浪费时间,想在这个大组里抽签抽选一个特邀代表跟老师玩,用抽签的方式公平吗?
师:现在在这一组中,每个同学被抽到的可能性是多少?如果还没有确定你们这一组呢?
师:这里的可能性为什么会发生变化?
(抽出一名学生上来玩一玩)
师:如果我想再玩一次,他还有可能被抽到吗?抽到xx的可能性大还是抽到他的可能性大?
理念:通过比较引出不确定事件的可能性是有大小的,体验到游戏的公平性与不确定事件发生的可能性大小有着密切的联系。用转盘很直观,更能激发学生对分数原有的认知。通过对某一同学被选到的可能性进行计算,让学生体验到某一事件的概率大小与总可能数有关,培养概率素养。进一步学习用分数表示可能性的大小。"如果我想再玩一次,他还有可能被抽到吗?抽到xx的可能性大还是抽到他的可能性大?"这里主要渗透了独立事件互不干涉的概率思想。
③研究扑克牌
出示a、2、3、4、5、6,6张扑克牌,其中有3张红桃,3张梅花。
师:老师规定抽到a我先报数,抽到其余5张你们先报数,可以吗?
师:你能设计一个公平的游戏规则来确定谁先报数吗?
师:这些不同的游戏规则有没有共同的地方?()说一说这里的6表示什么?3又表示什么?
师:设计一个规则,让老师报数的可能性是你们的两倍,能设计吗?
4、小结:同学们,刚才我们通过玩抢6游戏,发现游戏的不公平,我们就研究并创造了一些公平的游戏规则,在这个过程中你学到了什么?
理念:会根据要求设计公平的游戏规则,并能从数学的角度进行分析,进一步培养概率素养和用数学解决问题的能力。设计2倍的可能性,发展学生的思维能力。
三、应用
师:研究可能性充满趣味,而且可能性在我们生活中运用也是非常广泛。
1、阅读下面几句话,你有什么话要说?
a、福利彩票的中奖率是1/10000000
b、明天下雨的可能性是9/10
c、我想知道这些种子的成活的可能性是多少,我可以怎么做呢?
2、我们学校门口有个小贩子进行一个摸球抽奖游戏:他的规则是在10个球中抽
中红球的奖给你10元钱,抽中白球的则你给他3元钱。你怎么看待这个事情?
(1个红球,9个白球)若是摸10次,计算一下谁赚了?
3、师:可能性在我们数学上有一个专门的名字--概率。概率不仅在生活中应用广泛,而且在数学里它也是一门非常重要的学科,它是怎么发展的呢?让我们来看一个资料。阅读概率的发展史(播发音乐)
理念:让学生感受到概率在生活中的广泛应用,会数学的眼光看待并分析生活中的现象。渗透数学文化教育,让数学课更有内涵。
板书设计:可能性的大小
掷硬币转转盘抽签抽扑克牌
正面:1/21/31/163/6
反面:1/21/48
人教版可能性教学设计【第三篇】
教学目标:
1、 使学生进一步体验不确定事件,知道事件发生的可能性是有大小的。
2、 使学生经历事件发生的可能性大小的探索过程,初步感受随机现象的统计规律性,在活动交流中培养合作学习的意识和能力。
3、 使学生感受数学就在自己身边,体会数学学习与现实的联系,进一步培养学生的求实态度和科学精神。
教学重点:
使学生进一步体验不确定事件,知道事件发生的可能性是有大小的。
教学难点:
使学生感受数学就在自己身边,体会数学学习与现实的联系,进一步培养学生的求实态度和科学精神。
教学过程:
一、 交流名片。
1、展示。
指名到前面利用实物投影展示自己的名片,引导其他同学参与交流。
师:刚才小朋友们交流的非常热烈,那你想不想拿上来给大家看看?你先来吧,(一生上来介绍自己的名片),我们仔细看(老师示意其他同学和老师一块儿认真看),你从他的名片上了解到什么内容?(生说)你看得非常仔细,而且还在用心的记,很好。你是属牛(鼠)的,我也记住了,
请回。谁再来介绍?还有谁想来?
2、提问。
师:小朋友们,根据刚才大家的介绍,你想不想了解我们全班的一些情况?想了解什么呢?
学生可能会说
① 我想知道属牛的有多少人,属鼠的有多少人?
师:哦,你想了解属相问题。板书:属相。
②我想知道爱好什么的多? 板书:爱好
3、统计。
师:那怎么能知道? 学生可能会说:统计一下
师:这个方法不错,那我们就分组做一下统一下吧。请打开信封,老师为每个小组准备了三个表格,第一个是属相统计表,请统计出你们小组属牛的有多少张,属鼠的有多少张。第二个是爱好统计表,爱好唱歌的有多少张,……如果还有其他爱好,可在后面的空格里填写。第三张是性别统计表,男生、女生各有多少张?(教师利用实物投影向学生介绍三个表格的使用)
属相统计表 爱好统计表 性别统计表
听明白了吗?下面开始统计吧,看哪个小组统计得又快又对。
(教师向学生介绍完统计表后在黑板上贴出三张大的表格,设计成折叠式,只出示左半部分)
师:都统计完了吗,各小组汇报一
下吧。 各小组汇报统计的数据,教师记录在表格中。
二、摸名片(一)——体会数量越多,可能性越大。
1、激疑。
师:刚才大家统计得不错,下面呢,我们就来玩这些名片。想玩吗?想玩得好吗?那你可得听好了,看好了。来,先把你的名片翻过来,都放到桌子中央,合到一块儿,(教师慢慢说,一定要吸引住学生的注意力)不错,小朋友都跟着做了。看老师,我从这些名片中随便摸一张,想知道是属什么的?(生猜测着说)你告诉大家。(教师向一生出示结果),继续看,把这张放回去,重新打乱了,再摸一次,又是属什么的呢?你说说。如果这样重复摸很多次,结果会怎样呢?(学生发表自己的意见)究竟结果会怎样?想不想摸摸试试?那你会像老师刚才这样摸吗?好,听清老师要求,每人摸一次,小组长做好记录,并统计出结果,开始吧。
2、游戏。
(教师出示黑板上属相表格的右半部分,然后巡回参与小组的活动)
3、汇报。
①各小组汇报实验结果,教师在表格中记录数据,并做出标记。一般事先安排一、二、四组属同一种类型,如都是牛多鼠少,而三组则正好相反。当三组汇报完后,师可问:怎么你们小组摸到的鼠多?(和前二个小组不一样)
学生可能会说因为他们小组属鼠的多,别的小组属牛的多。
师:哦,原来是因为数量多少的问题,咱们一块儿看看是这样吗?一组……二组,哦,果然是这样,你们说的还真有道理,(教师指着表格中的数据和学生一块儿分析,并做标记)来,该四组说说你们的结果)如果4个小组实验的结果都正常,师可问:你从这4个小组的实验结果,能得出一个什么结论?
②验证偶然现象,可能四组出现了张数少的摸到的次数反而多这种偶然现象。(因为4组教师安排的两种属相数量相差小)也可能在别的小组出现这种偶然现象。
师:你们对这个实验结果有没有什么想法?其他同学也可以发表意见,哦,感觉不大对,不要紧,咱们再来重新做一次实验,这次咱们每人摸二次,谁到黑板上来做记录,其他同学仔细看好了,这下结果怎样?通过这次摸又能说明什么问题?(摸的次数越多,结果越准确,同时再一次说明数量多的,摸到的可能性大)。如果继续摸下去,摸100次,1000次呢?
③ 小组之间进行比较,发现问题。
师:再仔细比较一下这4个小组实验的这些数据,你能不能再发现点儿什么?学生可能会发现张数相差多的,摸到的次数相差也多,也就是摸到的可能性相差大,反之可能性相差小。
学生可能会说:某数和某数相差那么大,或我们组属牛(鼠)的一张也没摸到,因为属牛的张数太少了,只有一张……
师:你是说你们组摸到属牛的和属鼠的次数相差很大,有相差小的,举个例子。为什么会有相差大的,也有相差小的,这说明什么?
④进行合计,再次说明问题。 师:如果把全班同学的名片合到一块儿来摸,摸到属什么的可能性大呢?合计一下,看看结果怎样?(先合计张数,让学生预测后,再合计次数)
上面的汇报教师要把握好这几个层次。
a 引导学生分析自己小组的实验结果,体会到数量多的,摸到的可能性大。
b引导学生对偶然现象再次验证,体会到摸的次数越多,结果越准确,同时体会到数量多的,摸到的可能性就是大(也可能在这里没出现这种偶然现象)
c引导学生比较各小组的实验数据,发现数量相差大的,可能性相差小。 d引导学生进行合计,再次说明问题。
4、各小组预测摸到爱好什么的可能性大。
师:属相的问题我们解决了,我们还统计过爱好情况,你能猜猜摸到爱好什么的可能性最大,什么最小,为什么?(学生预测,教师在黑板上的表格中做标记)
5、预测摸到自己名片的可能性有多大。
师:刚才同学们非常关注有没有摸到自己的名片,那你认为在你们小组里你的名片被摸到的可能性大不大?为什么?如果放到全班里面来摸呢?
三、摸名片(二)——体会数量差不多的,可能性也差不多。
1、预测。
师:爱好的问题我们也研究过了,下面我们来研究男女生问题,你能猜一下你们小组摸到男生和女生的可能性各会怎样呢?(学生预测,教师标记)
2、验证。
师:最好的方法还是摸摸试试,这次每人摸2次,小组长还是要做好记录,你知道这次为什么要摸二次呢?(如果前面没有重复做第二次实验,这里就不必提这个问题了)(教师出示性别统计表的右半部分)。
3、汇报。
①各小组汇报结果,并同预测的比较,教师记录(学能会稍有差别,引导学生预测只要相差不大,就算结果正常)
②如出现偶然反常现象,要组织学生再做验证。
师:有的小组实验结果和预测的相差挺大的,不要紧,我们再来做一次,这个小组每人摸3次,谁上来记录,其他同学看好了。这下结果怎样?(一般结果会是次数差不多,或比原来缩小差距)
师:通过这次实验,你又有什么体会?如果继续摸下去,摸100次、1000次呢?
③老师在家里也做过一个类似的实验,(教师边说边向学生出示一枚硬币)抛硬币的实验,我连续抛了很多次,将正面和反面出现的次数做了统计,结果是这样的,大家看——
(投影出示)
你从中发现什么?(抛的次数越多,正面和反面出现的次数越接近,越能证
明正面和反面出现的可能性是一样大的)
四、应用——设计摸奖方案。
师:小朋友们,摸名片好玩吗?摸奖好不好玩?还有比摸奖更好玩的呢,那就是你设计一个摸奖方案,让别人来摸,摸什么你说了算,那多有意思。想不想试试?
(投影出示) 某商场玩具部要设计一个促销摸奖方案
①凡购物满50元,即可参加摸奖一次。
②兑奖规则。
红色珠子—一等奖遥控汽车 黄色珠子—二等奖芭比娃娃 蓝色珠子—三等奖智力拼图。
白色珠子—谢谢光临。
③用红黄蓝白各色珠子共100个进行摸奖,各种颜色珠子各应多少个呢? 红色珠子( )个,黄色珠子( )个,蓝色珠子( )个,白色珠子( )个,小伙伴共同商量一下吧。
汇报评优(可能各有各的优点)
五、课堂总结。
小朋友们,今天我们通过摸名片活动是在研究什么问题呀?(板书课题:可能性)你能关于可能性说一句话吗?(如:数量越多,可能性越大等等)在今天的课堂上你除了掌握了可能性的知识,还有什么体会?
《可能性》教学设计【第四篇】
统计与可能性
教学内容:课本第71-74页的内容。(奖牌给哪组)
知识目标:
1、 结合解决问题的过程,了解平均数的意义,体会平均数的必要性。
2、 能读懂简单的统计图表,并能根据统计图表解决一些简单的实际问题。
情感目标:
1、 让学生通过讨论“奖牌给哪组”,了解平均数的意义,体会平均数的必要性。
2、 结合具体的问题情境,让学生了解平均数问题在生活中的应用,激发学生学习数学的热情与兴趣。
课时安排:2课时
教学过程
备注
一、创设情境,导入新课。
1、 教师播放一段录像:两个小组在相同的时间内进行投篮比赛,最后老师把比赛的结果用简单的统计图表示出来,并提出思考:到底奖牌要分给哪一组?
2、 学生讨论并汇报。有的学生说,第一组投中的总数多,应该发给第一组;有的学生提出相反意见,因为第一组的人多,第二组的人少,不公平。从而得出应该要看平均每个同学投中几个球。
3、 揭题。
二、探索新知。
1、 让学生尝试解答。
2、 生汇报。
第一种解法:分别用“总数÷人数”的方法,计算两个小组平均每人投中篮球的个数。
第一小组平均每人投中(5+6+5+4+5)÷5=5(个)
第二小组平均每人投中(6+5+6+7)÷4=6(个)
第二种解法:用“移多补少”的方法,求平均数。
3、 师小结:通过研究奖牌发给谁这道题,你得到了什么启示?如何计算平均数?
4、 拓展:生活中,应用平均数解答的数学问题还有很多,谁能举例?
三、巩固练习:
1、 做书本第72页试一试。
本道题解题的关键是要分析前三天的销售量与今天的进货
量之间有什么联系。根据前三天卖出冰糕的平均数来进货的,但不是唯一的。比如,可以联系气温的升高,可以联系休息日等问题。
2、 做书本第73页练一练第一小题。
先让学生尝试解题,再汇报交流。交流的过程中,引导学生可以在统计表上直接用“移多补少”的方法求平均数。