新初二年级下册数学知识点(实用3篇)
【路引】由阿拉题库网美丽的网友为您整理分享的“新初二年级下册数学知识点(实用3篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
八年级下学期的数学知识点1
常见的统计图:
常见的统计图有条形统计图、折线统计图、扇形统计图三种,在解决实际问题时,具体选择用哪种统计图,要依据统计图的特点和问题的要求而定。
1、条形统计图:
(1)条形统计图是用一个单位长度表示一定的`数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。条形统计图又分为条形统计图和复式条形统计图。
(2)特点:能够显示每组中的具体数据;易于比较数据间的差别;如果要表示的数据各自独立,一般要选用条形统计图。
(3)绘制方法:
①为了使图形大小适当,先要确定横轴和纵轴的长度,画出横轴和纵轴;
②确定单位长度,根据要表示的数据的大小和数据的种类,分别确定两个轴的单位长度,在横纵、纵轴上从零开始等距离分段;
③用长短(或高低)不同的直条来表示具体的数量,直条的宽度要适当,每个直条的宽度要相等,直条之间的距离也要相等;
④要注明各直条所表示的统计对象、单位和数量,写上统计图的名称、制图日期,复式条形图还要有图例。
2、折线统计图:
(1)折线统计图用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变★★化。
(2)特点:折线统计图能够清晰地显示数据增减变化。如果表示的数据是想了解随时间变化而变化的情况,那么就采用折线统计图。
(3)绘制方法:
①根据统计资料整理数据;
②用一定单位表示一定的数量,画出纵、横轴;
③根据数量的多少,在纵、横轴的恰当位置描出各点;
④把各点用线段按顺序依次连接起来;
⑤统计图中的数据是不是统计资料整理的数据。
3、扇形统计图:
(1)扇形统计图用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。
(2)特点:扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360的比。如果表示的数据是想了解各数据所占的百分比,那么一般采用扇形统计图。
(3)绘制方法:
①先算出个部分数量占总数量的百分之几。
②再算出表示个部分数量的扇形的圆心角的度数。
③取适当的半径画一个圆,并按照上面算出的圆心角的度数在圆里画出各个扇形
④在每个扇形中标明所表示的各个部分数量名称和所占的百分数,并用不同的颜色区别
⑤写上名称和制图日期。
读书破万卷下笔如有神,以上就是差异网为大家整理的3篇《新初二年级下册数学知识点》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在差异网。
八年级下学期的数学知识点2
乘法公式
1、 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
④单项式乘法法则对于三个以上的单项式相乘同样适用;
⑤单项式乘以单项式,结果仍是一个单项式。
2、单项式与多项式相乘
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:
①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
②运算时要注意积的符号,多项式的每一项都包括它前面的符号;
③在混合运算时,要注意运算顺序。
3、多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:
①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
②多项式相乘的结果应注意合并同类项;
③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
八年级下学期的数学知识点3
一、投影:
1、平行投影:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。
平行投影的特征:
(1)点的投影仍是点;
(2)直线的投影一般仍是直线;
(3)一点在某直线上,则该点的投影一定在该直线的投影上;
(4)直线上两线段之比,等于其影长之比;
(5)两直线平行,其投影平行或在同一直线上。
2、中心投影:灯光的光线可以看成是从同一点发出的(即为点光源),像这样的光线所形成的投影称为中心投影。
中心投影的特征:
(1)对应点连线都经过一点,这一点就是光源的位置;
(2)物体的投影的大小,是随着光源距离物体的远近而变化的,或者是随物体离投影面的远近而变化的;
(3)中心投影不能反映原物体的真实形状和大小。
3、正投影:投影线垂直于投影面时产生的投影叫做正投影。
正投影的特征:
(1)当平面图形平行于投影面时,它的正投影是与它全等的平面几何图形(点的正投影仍是一个点);
(2)当平面图形垂直于投影面时,它的正投影是一条线段(线段垂直于投影面时的正投影是一个点);
(3)当平面图形位于投影面上时,它的正投影是它本身。
二、太阳光与影子:
物体在太阳光线照射的不同时刻, 不仅影子的长短在变化,而且影子的方向也改变,根据不同时刻影长的变换规律,以及太阳东升西落的自然规律,可以判断时间的先后顺序。
三、灯光与影子:
在某确定灯光下固定物体的影子与方向是一定的,对灯而言,移动的物体离灯越近,影子越短,离灯越远,影子越长。
四、视点、视线、盲区:
眼睛的位置称为视点,由视点发出的线称为视线,看不到的区域称为盲区。