高二年级数学必修二知识点梳理优质5篇
【路引】由阿拉题库网美丽的网友为您整理分享的“高二年级数学必修二知识点梳理优质5篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
高二数学必修二课件【第一篇】
一、目标要求
1、深入钻练教材,在借鉴她校课件基础上,结合所教学生实际,确定好每节课所教内容,及所采用的教学手段、方法。
2、本期还要帮助学生搞好《数学》必修内容的复习,一是为学生学业水平检测作准备,二是为高二复习打基础。
3、本期的专题选讲务求实效。
4、继续培养学的学习兴趣,帮助学生解决好学习教学中的困难,提高学生的数学素养和综合能力。
5、本期重点培养和提升学生的抽象思维、概括、归纳、整理、类比、相互转化、数形结合等能力,提高学生解题能力。
二、教学措施:
1、认真落实,搞好集体备课。每周至少进行一次集体备课,每位老师都要提前一周进行单元式的备课,集体备课时,由一名老师作主要发言人,对下一周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。在星期一的集合备课中,主要是对上周备课中的情况作补充。每次备课都要用一定的时间交流一下前一段的教学情况,进度、学生掌握情况等。
2、详细计划,保证练习质量。教学中用配备资料是《高中数学新新学案》,要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。每周以内容滚动式编一份练习试卷,星期五发给学生带回家完成,星期一交,老师要进行批改,存在的普遍性问题安排时间讲评。试题量控制为10道选择题(4旧6新)、4道填空题(1旧3新)、4道解答题。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。本学期第二课堂与数学竞赛准备班继续分开进行辅导。平常意义上的第二课堂辅导学生,主要是以兴趣班的形式,以复习巩固课堂教学的同步内容为主,一般只选用常规题为例题和练习,难度低于高考接近高考,用专题讲授为主要形式开展辅导工作。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要,所以每位老师必须重视搞好辅导工作。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。
高二数学必修二知识点笔记【第二篇】
圆锥曲线
1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。
2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。
3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。
高二数学必修二知识点笔记【第三篇】
二面角和二面角的平面角
二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面
二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角
直二面角:平面角是直角的二面角叫直二面角
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
高二年级数学必修二知识点梳理【第四篇】
导数是微积分中的重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δ与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δ=f(x0+Δx)-f(x0);如果Δ与Δx之比当Δx→0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f'(x0),也记作'│x=x0或d/dx│x=x0
高二年级必修二数学知识点【第五篇】
导数是微积分中的`重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δ与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δ=f(x0+Δx)-f(x0);如果Δ与Δx之比当Δx→0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f'(x0),也记作'│x=x0或d/dx│x=x0