高一数学知识点总结(精编3篇)
【路引】由阿拉题库网美丽的网友为您整理分享的“高一数学知识点总结(精编3篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
高一数学总结1
不知不觉20xx年已经过去,透过对教学的实践,对学生学情的掌握,以及对“精讲多练”教学要求的认识,我逐步适应了这个层次学生的理解潜力,学生也慢慢适应了我的这种教学模式。这是对我的一个检验,也使得我对教学有了更深层次的认识,为以后的教学做更充足的准备。以下是我在教学过程中的一些认识和感想:
一、根据学生学情教学
在教学中,我们常常把自己学习数学的经历作为选取教学方法的一个重要参照,我们每一个人都做过学生,我们每一个人都学过数学,在学习过程中所品尝过的喜怒哀乐,紧张、痛苦和欢乐的经历对我们这天的学生仍有必须的启迪。
但是,在开始的上课过程中,我常常看到学生茫然的眼神,伏案会周公的情形,以及一声声的“老师,我听不懂!”让我的内心觉得十分的不安:我是不是讲的太难了?太艰涩难懂了?回头想想,发现自己是以以前自身作为学生的状况来思考教学,并没有更多的思考此刻学生的状况。这时候,我认识到我们已有的数学学习经历还不够给自己带给更多、更有价值、可用作反思的素材。这时候就就应站在学生的角度,从学生的观点出发,参考并制定适合他们的教学方法,每个学生的状况都未必相同,理应先思考大多数学生的学习状况,然后能够适当的进行针对性的备课与教学。
二、备课小组组内交流探讨
这一年来透过与同事和学生代表交流,一致认为不就应急于求成赶进度,就应将学生的基础夯实,并将初中的部分相关知识点融入到课堂教学中。新课程对教学过程的要求是用生动的课堂过程激发学生的对数学的兴趣,让学生理解所学的基本知识点,把握学生在一节课内的情感流线,加强学生对解题过程的理解,使学生掌握自主探索的潜力最后才是让学生对知识点的应用。
透过对教学过程的探讨与交流,我们高一备课组成员达成对“精讲多练”教学要求的共识,在今后的教学过程中,力争做到精讲多练,更好地提高课堂教学的有效性。
三、认真听取学生对数学课的意见和推荐
由于在课堂教学过程中,第一周的学生状况不是很好,上课睡觉的学生大有人在,作业完成状况也不乐观,解题格式不清楚,概念混淆等状况时有发生。因此,我经常把他们对数学课的感受以及意见和推荐都写在纸条上交上来(无记名方式),我在阅读他们的意见和推荐的过程中,发现了许多自身的不足和学生的'基本状况:
1、讲多练少。这一点在之后的教学过程中已经逐步改善。
2、课堂例题应以课本为主,出题要有针对性,还要从易到难逐步递进。
3、题目讲解、分析要清晰明了,步骤要分明。这方面在听取多位老教师讲课后,大为改观,尤为体此刻作业完成状况上,解题格式明显清晰许多。
4、上课互动性的增强:在课堂中,对学生完成课堂练习的状况进行分析,分析学生的解题状况,透过提问其他学生,让全班学生帮忙分析错题原因,做到讲、练、评的有效结合。
在这一届高一学生中,学生的基础普遍较差,所以要耐心加细心,不能太急于求成。每次备课、上课前都应先思考上一节课学生的掌握状况进行备课、教学。并且在每次尽量将相关的初中知识点进行复习记忆,帮忙学生巩固初中知识。
四、对学生的要求及反馈
针对学生的上课表现以及课后作业状况,在第二周的时候我明确给学生提出了以下三个要求:
1、课前务必要预习新课资料。做好预习工作是学好这堂课的先决条件,没有预习,就不明白这节课所要上的资料是什么,自己所不会的是什么,更不清楚新课中的重点和难点在哪了。
2、上课时务必准备一本数学专用的笔记本,用来做课堂笔记以及课堂练习所用。上课要做到动脑、动手、动笔,只有多动手做题,理解解题过程,才能更加有效的将知识点吸收、理解和应用,才能更好的记忆有关知识点。
3、课后及时完成复习,认真的对教材中知识要点进行梳理,并且尽量独立自主地完成老师当天布置的练习和作业,透过练习巩固基础。多做题,从中发现自己的不足和缺漏是学好数学的重要方法。
读书破万卷下笔如有神,以上就是差异网为大家带来的3篇《高一数学知识点总结》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在差异网。
高一数学总结2
本学期我担任高一(4)、(6)两班的数学教学。本学期教学主要资料有:集合与函数的概念,基本初等函数:指数函数、对数函数,现将本学期教学总结如下:
一、教学方面
1、认真研究课程标准。在课程改革中,教师是关键,教师对新课程的理解与参与是推进课程改革的前提。认真学习数学课程标准,对课改有所了解。课程标准明确规定了教学的目的、教学目标、教学的指导思想以及教学资料的确定和安排。继承传统,更新教学观念。高中数学新课标指出:“丰富学生的学习方式,改善学生的学习方法是高中数学课程追求的基本理念。学生的数学学习活动不应只限于对概念、结论和技能的记忆、模仿和理解,独立思考、自主探索、动手实践、合作交流、阅读自学等都是学习数学的重要方式。在高中数学教学中,教师的讲授仍然是重要的教学方式之一,但要注意的是务必关注学生的主体参与,师生互动”。
2、合理使用教科书,提高课堂效益。对教材资料,教学时需要作适当处理,适当补充或降低难度是备课务必处理的。灵活使用教材,才能在教学中少走弯路,提高教学质量。对教材中存在的一些问题,教师应认真理解课标,对课标要求的重点资料要作适量的补充;对教材中不贴合学生实际的题目要作适当的调整。此外,还应把握教材的“度”,不要想一步到位,如函数性质的教学,要多次螺旋上升,逐步加深。
3、改善学生的学习方式,注意问题的提出、探究和解决。教会学生发现问题和提出问题的方法。以问题引导学生去发现、探究、归纳、总结。引导他们更加主动、有兴趣的学,培养问题意识。
4、在课后作业,反馈练习中培养学生自学潜力。
课后作业和反馈练习、测试是检查学生学习效果的重要手段。抓好这一环节的教学,也有利于复习和巩固旧课,还锻炼了学生的自学潜力。在学完一课、一单元后,让学生主动归纳总结,要求学生尽量自己独立完成,以便正确反馈教学效果。
5、分层次教学。我所教的两个班,层次差别大,1班主要是落后面的学生,初中的基础差,高中的知识对他们来说就更增加了难度,而2班也是两极分化严重,前面16个学生的基础扎实,成绩在中等以上,而后面的30个学生的成绩却处于中下以下的水平,因此,不管是备课还是备练习,我都注重分层次教学,注意引导他们从基础做起,同时又不乏让他们能够开拓思维,用心动脑的提高性知识,让人人有的学,让人人学有获。
二、存在困惑
1、书本习题都较简单和基础,而我们的教辅题目偏难,加重了学生的学习负担,而且学生完成状况很不好。课时又不足,教学时间紧,没时间讲评这些练习题。
2、在教学中,经常出现一节课的教学任务完不成的现象,更少巩固练习的时间。勉强按规定时间讲完,一些学生听得似懂非懂,造成差生越来越多。而且知识资料需要补充的资料有:乘法公式;因式分解的十字相乘法;一元二次方程及根与系数的关系;根式的运算;解不等式等知识。
3、虽然经常要求学生课后要去完成教辅上的精选的题目,但是,相当部分的同学还是没办法完成。学生的课业负担太重,有的学生则是学习意识淡薄。
三、今后要注意的几点
1、要处理好课时紧张与教学资料多的矛盾,加强对教材的研究;
2、注意对教辅材料题目的精选;
3、要加强对数学后进生的思想教育。
总之,若一名高中教师,对教材的不熟悉,对重难点的突破,对考点的把握,对学生的方法指导,对高中教学的经验都是一个很大漏洞,我将把握好每一天,继续努力,争取更好的成绩。
高一数学知识点总结3
第一章
〖〗集合
集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性。
(2)常用数集及其记法N表示自然数集,N_或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集。
(3)集合与元素间的关系
(4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合。
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合。
③描述法:{x|x具有的性质},其中x为集合的代表元素。
④图示法:用数轴或韦恩图来表示集合。
(5)集合的分类
①含有有限个元素的集合叫做有限集。②含有无限个元素的集合叫做无限集。③不含有任何元素的集合叫做空集。
集合间的基本关系
(6)子集、真子集、集合相等
集合的基本运算
(8)交集、并集、补集
补充知识含绝对值的不等式与一元二次不等式的解法
(1)含绝对值的不等式的解法
(2)一元二次不等式的解法
〖〗函数及其表示
函数的概念
(1)函数的概念
①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A→B.
②函数的三要素:定义域、值域和对应法则。
③只有定义域相同,且对应法则也相同的两个函数才是同一函数。
(2)区间的概念及表示法
{{7}}$
(3)求函数的定义域时,一般遵循以下原则:
①f(x)是整式时,定义域是全体实数。
②f(x)是分式函数时,定义域是使分母不为零的一切实数。
③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.
⑥零(负)指数幂的底数不能为零。
⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集。
⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a≤g(x)≤b解出。
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论。
⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义。
(4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的。事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同。求函数值域与最值的常用方法:
①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值。
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值。
④不等式法:利用基本不等式确定函数的值域或最值。
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题。
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值。
⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值。
⑧函数的单调性法。
函数的表示法
(5)函数的表示方法
表示函数的方法,常用的有解析法、列表法、图象法三种。
解析法:就是用数学表达式表示两个变量之间的对应关系。列表法:就是列出表格来表示两个变量之间的对应关系。图象法:就是用图象表示两个变量之间的对应关系。
(6)映射的概念
④不等式法:利用基本不等式确定函数的值域或最值。
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题。
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值。
⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值。
⑧函数的单调性法。
函数的表示法
(5)函数的表示方法
表示函数的方法,常用的有解析法、列表法、图象法三种。
解析法:就是用数学表达式表示两个变量之间的对应关系。列表法:就是列出表格来表示两个变量之间的对应关系。图象法:就是用图象表示两个变量之间的对应关系。
(6)映射的概念
${{9}}$
〖〗函数的基本性质
单调性与最大(小)值
(1)函数的单调性
①定义及判定方法
②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数。
{{13}}
奇偶性
(4)函数的奇偶性
①定义及判定方法
②若函数f(x)为奇函数,且在x=0处有定义,则f(0)=0.
③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反。
④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数。
〖补充知识〗函数的图象
(1)作图
利用描点法作图:
①确定函数的定义域;
②化解函数解析式;
③讨论函数的性质(奇偶性、单调性);
④画出函数的图象。
利用基本函数图象的变换作图:
要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象。
①平移变换
②伸缩变换
③对称变换
(2)识图
对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系。
(3)用图
函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具。要重视数形结合解题的思想方法。
第二章 基本初等函数(Ⅰ)
〖〗指数函数
指数与指数幂的运算
(1)根式的概念
{{19}}
{{21}}$
指数函数及其性质
(4)指数函数
〖〗对数函数
对数与对数运算
(1)对数的定义
{{24}}
对数函数及其性质
(5)对数函数
{{27}}
〖〗幂函数
(1)幂函数的定义
一般地,函数y=xa叫做幂函数,其中x为自变量,a是常数。
(2)幂函数的图象
(3)幂函数的性质
①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象。幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象
②过定点:所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1)
③单调性:如果a>0,则幂函数的图象过原点,并且在[0, +∞)上为增函数。如果a<0,则幂函数的图象在[0, +∞)上为减函数,在第一象限内,图象无限接近x轴与y轴。
{{30}}$
〖补充知识〗二次函数
(1)二次函数解析式的三种形式
(2)求二次函数解析式的方法
①已知三个点坐标时,宜用一般式。
②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式。
③若已知抛物线与X轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便。
(3)二次函数图象的性质
{{33}}
一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布。
{{36}}
{{38}}
⑥k1 {{41}} 第三章 函数的应用 方程的根与函数的零点