首页 > 学习资料 > 教育其它 >

二次根式知识点总结优秀5篇

网友发表时间 216029

【路引】由阿拉题库网美丽的网友为您整理分享的“二次根式知识点总结优秀5篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

二次根式教案【第一篇】

学习目标

1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。

2、过程与方法:进一步体会分类讨论的数学思想。

3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。

学习重难点

1、重点:准确理解二次根式的概念,并能进行简单的计算。

2、难点:准确理解二次根式的双重非负性。

学习内容 课本第2― 3页

学习流程

一、课前准备(预习学案见附件1)

学生在家中认真阅读理解课本中相关内容的知识,并根据自己的'理解完成预习学案。

二、课堂教学

(一)合作学习阶段。

教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

(二)集体讲授阶段。(15分钟左右)

1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

2. 教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。

3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

(三)当堂检测阶段

为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。

(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)

三、课后作业(课后作业见附件2)

教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。

四、板书设计

课题:二次根式(1)

二次根式概念 例题 例题

二次根式性质

反思:

二次根式数学教案【第二篇】

课题:二次根式

教学目标 1、知识与技能

理解a(a≥0)是一个非负数, (a≥0)

2、过程与方法

(1)数学思考:学会独立思考、体会数学的体验归纳、类比的思想

方法

(2) 问题解决:能够利用性质进行二次根式的化简计算,能够互助

交流合作,分析问题,总结反思

3、情感、态度与价值观

体验成功的乐趣,锻炼克服困难的意志,培养严谨

求实的科学态度

教学重难点 教学重点:二次根式的概念

教学难点:二次根式中根号下必须为非负数

教学过程

一、课前回顾

(2分钟)

学生与老师共同回顾上节课所学内容,温故而知新。 什么是二次根式?

二次根式中字母的取值范围:

①被开方数大于等于零;

②分母中有字母时,要保证分母不为零。

③多个条件组合时,应用不等式组求解

一、情境引入(3分钟)

由生活中的实例引入投影的概念,引起学生的学习兴趣

已知下列各正方形的面积,求其边长。

二、探究1(10分钟)

练习1:

计算下列各式:

三、探究2(10分钟)

可以发现它们有如下规律:

一般的,二次根式有下列性质:

练习2:

典型例题 例1:计算:

例2:计算:

达标测试(5分钟)

课堂测试,检验学习结果

1、判断题

2、若 ,则x的取值范围为 ( A )

(A) x≤1 (B) x≥1

(C) 0≤x≤1 (D)一切有理数

3、计算

4、化简

5、已知a,b,c为△ABC的三边长,化简:

这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。

应用提高(5分钟)

能力提升,学有余力的同学可以仔细研究 如图,P是直角坐标系中一点。

(1)用二次根式表示点P到原点O的距离;

(2)如果 求点P到原点O的距离

体验收获 今天我们学习了哪些知识

二次根式的两条性质。

布置作业 教材8页习题第3、4题。

二次根式教案【第三篇】

教学目标:

1.知识目标:二次根式的加减法运算

2.能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。

3.情感态度:培养学生善于思考,一丝不苟的科学精神。

重难点分析:

重点:能熟练进行二次根式的加减运算。

难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。

教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。

运用教具:小黑板等。

教学过程:

问题与情景

师生活动

设计目的

活动一:

情景引入,导学展示

1.把下列二次根式化为最简二次根式: , ; , , 。上述两组二次根式,有什么特点?

2.现有一块长、宽5dm的木板,能否采用如教科书图所示的方式,在这块木板上截出两个面积分别是8dm 和18dm 的正方形木板?

这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。 教师倾听学生的交流,指导学生探究。

问:什么样的二次根式能进行加减运算,运算到那一步为止。

由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。

加强新旧知识的联系。通过观察,初步认识同类二次根式。

引出二次根式加减法则。

3. A、B层同学自主学习15页例1、例2、例3,C层同学至少完成例1、例2的学习。

例1.计算:

(1) ;

(2) - ;

例2. 计算:

1)

2)

例3.要焊接一个如教科书图―2所示的钢架,大约需要多少米钢材(精确到米)?

活动二:分层练习,合作互助

1.下列计算是否正确?为什么?

(1)

(2) ;

(3) 。

2.计算:

(1) ;

(2)

(3)

(4)

3.(见课本16页)

补充:

活动三:分层检测,反馈小结

教材17页习题:

A层、B层:2、3.

C层1、2.

小结:

这节课你学到了什么知识?你有什么收获?

作业:课堂练习册第5、6页。

自学的同时抽查部分同学在黑板上板书计算过程。抽2名C层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名B层同学订正。抽2名B层同学在黑板上完成例2板书过程,若出现错误,再抽2名A层同学订正。抽1名A层同学在黑板上完成例3板书过程,并做适当的分析讲解。

此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到 m, 学生考虑问题要全面,不能漏掉任何一段钢材。

老师提示:

1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。

A层同学完成16页练习1、2、3;B层同学完成练习1、2,可选做第3题;C层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名C层同学口答练习1;抽4名B层或C层同学在黑板上板书练习第2题;抽1名A层或B层同学在黑板上板书练习第3题后再分析讲解。

点拨:1)对 的化简是否正确;2)当根式中出现小数、分数、字母时,是否能正确处理;

3)运算法则的运用是否正确

先测试,再小组内互批,查找问题。学生反思本节课学到的知识,谈自己的感受。

小结时教师要关注:

1)学生是否抓住本课的重点;

2)对于常见错误的认识。

把学习目标由高到低分为A、B、C三个层次,教学中做到分层要求。

学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的欲望。

将二次根式的加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的应用意识和能力。

小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。

培养学生的计算的准确性,以培养学生科学的精神。

对课堂的问题及时反馈,使学生熟练掌握新知识。

每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。

二次根式教案【第四篇】

教材分析:

本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。

学生分析:

本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。

设计理念:

新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的自主性、探究性、合作性学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效性,并对推论进行评价。从而营造一个接纳的、支持的、宽容的良好氛围进行学习。

教学目标知识与技能目标:

会化简二次根式,了解同类二次根式的概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。

过程与方法目标:

通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的过程,发展学生的抽象概括能力。

情感态度与价值观:

通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣。

重点、难点:重点:

合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。

难点:

二次根式加减法的实际应用。

关键问题 :

了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。

教学方法:.

1. 引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题―探索―发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。

2. 类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。

3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导,实现全优的教育效果。

二次根式教案【第五篇】

一、复习引入

学生活动:请同学们完成下列各题:

1.计算

(1)(2x+y)・zx(2)(2x2y+3xy2)÷xy

二、探索新知

如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

例1.计算:

(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.

解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算

(1)(+6)(3-)(2)(+)(-)

分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

解:(1)(+6)(3-)

=3-2+18-6=13-3(2)(+)(-)=()2-()2

=10-7=3

三、巩固练习

课本P20练习1、2.

四、应用拓展

例3.已知=2-,其中a、b是实数,且a+b≠0,

化简+,并求值.

分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?

相关推荐

热门文档

23 216029