《乘法分配律》数学教案精编4篇
【路引】由阿拉题库网美丽的网友为您整理分享的“《乘法分配律》数学教案精编4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
《乘法分配律》教案1
教学内容
人教版四年级下册课本36页例3.
教材与学情定位
本内容是人教版四年级下册四则运算之中的一个规律性知识,是在学生学习认知了加减乘除各部分之间的关系和加法、乘法交换律、结合律之后的知识内容,其承载了 “两个数的和与一个数相乘,可以把这两个数分别同这个数相乘”的内容,学生计算起来容易出现问题或者错误,总是会把其中一个加数与因数相乘,却把另外一个加数忽略。
设计理念
1、乘法分配律在学习两位数乘一位数的乘法口算、笔算以及两位数乘两位数的笔算教学中已经有所渗透。乘法分配律的学习是否可以由此引入,由此加强与学生已有知识基础的联系,运用知识的正迁移,解决学生对乘法分配律难理解,易用错的问题。
2、乘法分配律到底难在哪里?是学生体验不到成功,还是乘法分配律作为简便运算的一个方法而不能体现其简便性。如果是又当如何体现,其教学的临界点在哪里?
2、乘法分配律必须在学生了解了乘法交换律和结合律的基础上进行吗?通过两位数乘两位数的乘法计算是否可以进行导入?如果可行,是不是我们在一年的教学中把‘花开两朵单表一枝’做的太过了而忽略了另一只鲜花的存在?
教学目标
1、通过观察、分析、比较,引导学生概括、理解并且掌握乘法分配律,体会到乘法分配律作为一种简便运算的手段的可实行性和其存在的必然性。
2、通过观察、分析、比较,培养学生概括、分析、推理的能力。通过观察、分析、比较,培养学生概括、分析、推理的能力。
教学重点
从数字到图形到字母形式的转化提炼,抽象概括出乘法分配律。
教学难点:
1.理解乘法分配律,体会其优越性。
2.乘法分配律应用中出现的问题如何有效突破。
教学过程
1、同学们我们前面学习过两位数乘两位数,
出示:25×14=
算式表示什么意义?(14个25是多少。)你能计算这个题目吗?(能)完成在练习本上。
(师把25×14写在黑板左侧,指生上展示台展示自己的书写过程,并分别说明100是怎么求的?250呢?教师把学生的想法记录在展示本上)
过程:25
×14
100 25×4
25 25×10
350
问及全班,相同计算过程与结果的举手,师边走边问回到黑板刚才我们怎么计算的?100=25×4,再算250=25×10,然后把它们的积+起来,顺手板书(注意前后顺序先写右侧25×4,在写25×10最后写‘+’号)。注意看,前面明明是25×14,怎么在右侧却变成了25×10 和25×4?(实际上是把14分成了10+4的和)
师随生动:14分成(10+4)的和乘25
指25×14表示什么?14个25是多少
指(10+4)×25表示什么?14个25是多少?
指10×25+4×25表示什么?14个25是多少?
可以画等号吗?可以
那下面这几个算式表示什么?也可以这样写吗?
设计意图
本环节设计主要是通过两位数乘两位数竖式计算算理的研究,打通与乘法分配律的关系,初步建立知识的感知。
出示15×12= 23×16=
学生观察:发现都是两位数乘两位数的运算,表示可以。
师指生描述算式的含义并由学生独立完成算式转换。
学生通过验证认识到:
15×12=(10+2)×25=10×15+2×15
23×16=(10+6)×23=10×23+6×23
16×25=(10+6)×25=10×25+6×25
现在还想等吗?
15×12=(10+2)×25=10×15+2×15
23×14=(10+4)×23=10×23+4×23
16×25=(10+6)×25=10×25+6×25
生:相等。
师:为什么?谁能说明白为什么仍旧相等?等号左边表示什么右边又表示什么?
生:等号左边表示10+4的和个23就是14个23是多少;右边10个23+4个23是多少。两边都是14个23是多少,所以相等。
师:读一遍等式,体会等式的意义。(此处不去小结,让学生初步意会到,但是不适合言传)
设计意图
本环节意在学生初步感知乘法分配律的意义存在,通过等号左右两边的关系和意义说明乘法分配律的存在的意义与其存在的实际价值。
师:同学们如果给你写出左边的算式,你能推导出右边的算式吗?
生:可以。
2、出示三道练习题目,(完成在练习本上)引导学生探究发现、总结规律
(20+3)×37=
(10+9)×23=
(32+25)×74=
学生写出正确的右半边后教师引导学生观察黑板和屏幕上全部内容,等号左边和右边有什么相同和不同吗?你发现了什么?
生可能发现:左侧先算加法,再算乘法,右侧先算乘法再算加法;
左侧三个数,右侧四个数;
……
小结:两个数加起来的和乘第三个数,就等于这两个数分别乘第三个数,然后把乘积加起来。
设计意图
通过仿写,学生体会乘法分配律的意义和作用。深刻认知‘分别’的含义。
师抓住第二条,对呀,怎么多了一个数还想等?引导学生发现,屏幕红色字体呈现以(20+3)×37=为例说明是左侧括号里面的数分别乘括号外的数,所以多了一个。你能说出一组符合这个规律的数吗?
生一:(10+5)×74=10×74+5×74
同意的举手,鼓励的掌声送给他
生二:(10+7)×52=10×52+7×52
生三:(10+9)×24=10×24+9×24
生四:(30+2)×52=52×30+52×2
设计意图
学生如果完全可以自己仿制,说明这个内容孩子们真的掌握了,明确了,可以使用了,意思能够说明白了,但是仅仅是不能语言描述而已。
师:能说完吗?不能,看来这个层次的大家都没问题了,我出一个你会做吗?下面内容分层出示,体现知识层次性。
(16+△)×51=
(△+■)×○=
引导出字母形式:
(a+b)×c=
师:观察和班上和屏幕上的所有式子,你发现了什么?(可以进一步引导有规律吗?),同桌交流---组内交流(教师深入小组参与交流),全班交流。
本环节学生必须充分的讨论,争论,作为教师必须在学生的练习中找到问题,并及时全班范围内解决。
汇报时学生说的意思对就可以,多组汇报之后,逐步修正成比较完善的说法。教师出示规范的说法,学生自己说一遍,同桌互说一遍
小结:刚才我们从两位数乘法入手逐步发现:两个数的和乘一个数,可以把两个数分别同这个数相乘再相加,得数不变。这就是乘法分配律。
字母形式:(a+b)×c=a×c +b×c
也可以写成a×(b+c)=a×b+a×c
设计意图
本环节实现从数字到图形到字母形式再到文字表达形式的转化,提高认知难度的同时开拓新的只是先河,为五年级用字母表示数打下初步基础。
3、看谁算的又对又快:
(4+6)×27 ○ 4×27+6×27
(14+86)×39 ○14×39+86×39
(100+1)×37○100×37+1×37
3×62+5×62+2×62=
集体订正,说学生的做法,怎么做的?怎么想的!
设计意图
通过学生自己计算,感悟、发现乘法分配律作为一种简便运算的手段的优越性和可行性!
4、判断:
(1)(36+27)×5=36×5+27×5 ( )
(2)(13+79)×12=13+79×12 ( )
(3)(34+61)×43=34×61+43 ( )
(4)(2+4+3+1)×5=2×5+4×5+3×5+1×5 ( )
手势表示,对的举对号,错误的举起十字。
设计意图
本环节意在学生判明乘法分配律易错题目的认知,避免今后的练习中出现类似的错误。
5、情景剧:生活中的握手问题:
两个学生到老师这里来看望老师,进门需要握手,通过握手分别对以上题目进行展示,让学生进一步感知为什么不对,把知识做到最大程度的内化。
设计意图
学生在今后的解决问题中难免碰到类似的错误,如何更加有效地突破其难点,设计一个小情景剧,学生一旦出现类似的错误,只要想起握手问题,将会很容易改正,有效的突破手段。
6、全课小结:这节课我们共同研究了乘法分配律,你能举例说明什么样的算式才符合乘法分配律吗,乘法分配律你会应用了吗?
师:透露个小秘密,这是我们四年级下学期的内容,距离我们还很远,而我们却掌握了这个规律,最后一次把热烈的掌声送给自己。
它山之石可以攻玉,以上就是差异网为大家带来的4篇《《乘法分配律》数学教案》,能够给予您一定的参考与启发,是差异网的价值所在。
《乘法分配律》教案2
教学说明:
乘法运算定律的归纳、总结和运用对学生来说是一种能力的提高,它区别于一般计算的学习,需要学生有更强的观察能力和思维能力与之相配合,所以学习的困难会更大,特别是合理运用乘法运算定律使一些计算简便这部分内容。本课是要完成的是乘法分配律的学习与研究,下面就教学安排作简单说明。
一、观察与思考:通过对例题和生活实例的观察、研究和学习,初步感知乘法分配律,同时培养学生的观察能力和观察习惯,在生活中寻找和学习数学知识。
二、讨论与归纳:这是比观察与思考更高层次的要求。在观察与思考的基础上,通过学生之间的合作,通过相互讨论、研究、补充、完善,归纳出乘法分配律,从而使学生体验合作的重要性与必要性,体验成功的喜悦,懂得合作,学会合作。
三、练习与提高:通过两部分内容的练习,进一步熟悉、理解、认识和掌握乘法分配律。
四、简便运算:完成例2的学习,这一部分内容的思考性比较强,特别是对乘法运算定律的灵活运用学生的困难较大,所以在教学时要区别对待。基本内容部分要求全体学生掌握,也就是这一教学段的前三部分内容,这一教学段的最后一部分内容是为学有余力的学生准备的,让不同的学生有不同的收获,但同时获得成功的体验。
教学内容:
乘法分配律P28-29例1、例2
教学目标
1、知道乘法分配律的字母表达式。
2、懂得可以用乘法分配律把一个数与两个数的和相乘改写成两个积的和。
3、会用乘法分配律使一些计算简便。
教学重点
理解掌握乘法分配律。
教学难点
乘法分配律的得出及其运用。
教学安排
一、观察与思考:
1、出示例1:(1)看下图计算,有多少个小正方体?
A、用实物演示引出两种算法。
(5+3)×2=16(个)5×2+3×2=16(个)
B、观察以上两式得到:(5+3)×2=5×2+3×2
2、出示生活实例:
①一件上衣30元,一条裤子20元。买4套这样的服装一共需要多少元钱?
引导学生用两种方法解答,然后通过计算观察得出:
(30+20)×4=200(元)30×4+20×4=200(元)
即:(30+20)×4=30×4+20×4
②2角硬币和5角硬币各6枚,一共有多少钱?
请学生同桌说说两种计算方法,然后汇报结果。
(2+5)×6=42(角)2×6+5×6=42(角)
即:(2+5)×6=2×6+5×6
3、请学生仔细观察上面讨论得到的三组等式之间有什么相同的特点?
(前后两式是相等的、先算和再算积与先算积再算和是一样的……)
这就是今天我们重点要研究的乘法分配律。板书课题:乘法分配率
二、讨论与归纳:
1、出示问题,读读想想。
A、以上三组算式分别先算什么?再算什么?
B、它们之间有什么联系?
先小组讨论,再派代表汇报交流。
得出乘法分配律的正确说法。
看书,齐读乘法分配律。
2、质疑。
为什么乘法分配律说:“两个数的和与一个数相乘”而不是“两个数的和去乘以一个数。”?
(两个数的和与一个数相乘,这个数可写在两数之和的前面,也可写在两数之和的后面,而两个数的和乘以一个数,这个数只能写在两数之和的后面。)
3、用字母表示乘法分配律。
(A+B)×C=A×C+B×C
三、练习:
1、根据乘法分配律填上适当的数或运算符号。
(8+6)×3=8○3○6○3
(25+9)×40= ×40+ ×40
(56+)×3=56× +8×
2、判断:
13×(4+8)=13×4+8 ()
13×(4+8)=13×8+4×8 ()
13×(4+8)=13×4+13×8 ()
四、简便运算:
1、出示例2:(125+70)×8
请同桌两人右边的按运算顺序算,左边的用乘法分配律先去掉括号再算。
算好后同桌观察讨论:怎样算比较好?为什么?
教师总结:用乘法分配律能使一些计算简便。
2、选择题:
16×24+84×24的简便算法是()。
A、(16+24)×84 B、(16+84)×24 C、(16×84)×24
3、用简便方法计算下列各题(先同桌讨论,再独立完成)。(有★的不会做的学生可以不做)
(25+9)×8 29×175+25×29 48×128-28×48 ★75×99+75
★4、在方框里填上适当的数,使算式能用简便方法计算,你有几种不同的填法。(不会做的学生可以不做)
41×□+59×23 □×□+63×28
五、 小结:
1、乘法分配律及字母表达式。
2、运用乘法分配律应注意什么?
①运算符号②分配合理
《乘法分配律》数学教案3
教学目标
1、使学生理解乘法分配律的意义、
2、掌握乘法分配律的应用、
3、通过观察、分析、比较,培养学生的分析、推理和概括能力、
教学重点
乘法分配律的意义及应用、
教学难点
乘法分配律的反应用、
教具学具准备
口算卡片、投影仪、
教学步骤
一、铺垫孕伏
1、 口算
(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4
2、 用简便方法计算、(说明根据什么简算的)
25×63×4
3、 师生比赛,看谁算得又对又快、
20×5+5×80 (1250+125)×8
让学生说明是怎样算的?
二、探究新知
1、导入:
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容、(板书课题:乘法分配律)、
2、教学例6:
(1)出示例6:演示课件“乘法分配律”出示例6 下载
(2)引导学生观察每组的两个算式、
(3)教师提问:从上面的例子你发现了什么规律?
(4)学生明确:每组中的两个算式都可以用等号连接、
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的意义、
(6)反馈练习:按题要求,请你说出一个等式、(投影出示)
(__+__)×__=__+__×
教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘、
其次是等号右边两个加数分别同一个数相乘再把两个积相加、
最后是等号左右两边的两个算式相等、
3、教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变、这叫做乘法分配律、
4、反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?
根据练习学生从而得出: (a+b)×c=a×c+b×c
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便、
5、教学例7:演示课件“乘法分配律”出示例7 下载
(1)出示例7:102×43
启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便、
教师板书:
(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据乘法分配律,可以把原式改写成什么形式?
根据学生的回答教师板书:9×37+9×63
=9×(37+63)
=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和、
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数、
③另外两个不同的因数,是两个能凑成整十、整百、整千的加数、
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便、现在你们会了吗?
三、巩固发展 演示课件“乘法分配律”出示练习 下载
1、 练习十四第1题、
根据运算定律在□里填上适当的数、
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2、在横线上填上适当的数、
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写、
3、把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4、选择题:
(1)28×(42+29)与下面的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29
(2)与a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8
(3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5、练习十四第4题,投影出示、
一辆凤凰牌自行车420元,一辆永久牌自行车405元、现在各买三辆、买凤凰车和永久车一共用多少元?
四、课堂小结
今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加、希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便、
五、布置作业
练习十四第3题、
用简便方法计算下面各题、
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
《乘法分配律》数学教案4
教材分析 :
乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。
同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析:
学生基础较差、有的学生学习习惯不好,所以在设计教学过程时,我注意做到面向全体学生,尽量关注每个学生的发展。在前面教学中发现学生对于用字母表示规律的掌握是比较牢固的,而对于一些有规律的数字也只是进行简单的竖式计算,没有发现有些数字相乘之后积的特点,没有发现简算的意义。因此,要让学生在计算中体会出简算的必要和方便,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。
教学目标:
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
1、在这些学习活动中,使学生感受到他们的身边处处有数学。
2、增加学生之间的了解、同时体会到小伙伴合作的重要。
3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点:
理解并掌握乘法分配律——发现问题、提出假设、举例验证、探索出乘法分配律。
教学难点:
乘法分配律的推理及应用。
教学过程:
一、发现问题
1、出示情境图,让学生估计墙面上贴了多少块瓷砖。
2、 用不同方法验证结果。让学生用不同方法计算,并引导讨论为什么方法不同结果却一样,这其中是否蕴含着某些规律。
二、提出假设、举例验证、建立模型
1、根据上题的规律提出假设。
2、验证提出的假设是否适合其它数据。
观察上题算式的特点,小组内举一些数据来验证,可借助计算器,用一些较大的数据验证。
全班交流,并用字母表示分配律。
三、运用乘法分配律的简算。
1、试一试
让学生尝试用乘法分配律解决运算中的简算问题。然后进行交流,概括出简算的方法
(10+7)×6=____×6+_____×6
8×(125+9)=8×_____+8×_____
7×48+7×52=______×(_____+_______)
2、练一练:
进一步尝试用用乘法分配律解决运算中的简算问题。
板书设计:
乘法分配律
6×9+4×9=90 40×25+4×25=1100
(6+4)×9=90 (40+4)×25=1100
乘法分配律:(a+b)×c=a×c+b×c