《乘法分配律》数学教案精编4篇
【前言导读】这篇优秀教案“《乘法分配律》数学教案精编4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
四年级数学下册《乘法分配律》教案1
教学目标
1.引导学生探究和理解乘法分配律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:借助实际问题体会、认识乘法乘法律。
教学难点:用乘法交换律和结合律算式。
预设过程
一、引入
1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?
2、理解题意
二、探新
1、学生独自列式
2、小组交流想法
3、汇报:根据学生的回答板书
25×(4+9)=25×4+25×9=325
25×(4+9)=25×4+25×9
指名学生说出每一步表示的意义
(4+9)×25=4×25+9×25=325
(4+9)×25=4×25+9×25
4、改题:如果改为买45副,你又可以怎样算?
45×(4+9)=45×4+45×9
(4+9)×45=4×45+9×45
5、观察:请你们仔细观察上面这几题,
6、你们发现了什么?
相同点:左边都是两个数的和与一个数相乘,
右边都是两个数和这个数相乘再相加。
不同点:算式左边和右边有什么不同?
联系:算式左边和算式右边有什么联系?
6、举例:这样的算式你能再举出一些吗?
7、概括:你们能把上面的规律概括成一句话吗?
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
你能用字母表示吗?(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
8、质疑:还有什么问题?
三、巩固
1、做一做
判断并说明理由
2、第5题:下面哪些算式运用了乘法分配律
3、第6题
103×1220×5524×20525×24
四、:你们还有什么问题?
五、布置作业:
1、口算
2、作业本
3、寻找生活中乘法分配律的例子。
板书设计
作业设计:
课堂作业本P15
口算训练P16
教学反思
课后反思:在第一个班上课,我是运用以上的情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。
在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这样的情境比较清晰,学生列出算式后再让学生说一说,
生1:我觉得这样的两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。
生2:是呀,一个数好像是公共财产,都是它们共有的。
这样学生对这个因数理解起来就比较简单,也觉得比较有意思。再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。
乘法分配律教学设计2
知识与技能目标:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、能够运用乘法分配律进行一些简便的计算。
过程与方法:
培养学生观察、归纳、概括等初步的逻辑思维能力。
情感与价值观:
渗透“由特殊到一般,再识由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、自己得出结论的学习意识。
教学重点
理解并掌握乘法分配律
教学难点
乘法分配律的推理及运用
教学准备
多媒体电脑、课件
教学过程
一、用简便方法计算下面各题。
452+199+24838×125×8×3
二、比赛激趣,提出猜想
(1)热身赛。(请看大屏幕,男同学做第一小题,女同学做第二小题,看谁做的又对又快。)
10×37+10×6→←3
10×(37+63)
(2)评出胜负。(做完的同学请举手,汇报计算过程,并提问这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
10×37+10×63=10×(37+63)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
(设计意图:通过一道题目里的两种不同的计算方法,让学生通过观察、类比、发现、概括、归纳,初步了解其中的规律。)
三、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)
2、(1)谁能估计一下一共贴了多少块瓷砖?
(2)请大家用自己的方法来验证他的估计是否正确。
(3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?(板书)
(设计意图:学生用不同的方法列式计算,为探讨规律做准备。
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
4、讨论交流:交流学生的举例是否符合要求,并交流算式的共同特点,你发现了什么?
5、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)()(运算顺序不同但结果相同)
(设计意图:找到两个式子之间的特点,是理解乘法分配律的关键。)
(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(4)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?
(a+b)×c=a×c+b×c
(5)等号左边(a+b)×c表示什么意思?等号右边a×c+b×c表示什么意思?这个等式从左到右成立,反过来从右到左呢?也是成立的。
四、探索发展,应用规律
(1)我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(80+4)×2534×72+34×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
(3)刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?
38×29+3843×102
(4)小结:如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。
(设计意图:特别注意引导学生找到式子中的运算方法与数字的不同。)
五、巩固练习,解决问题(我们刚才认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习。)
1、请大家根据运算定律在下面的_里填上适当的数。
(10+7)×6=______×6+______×6
8×(125+9)=8×______+8×______
7×48+7×52=______×(______+_______)
2、将得数相等的算式用线连起来。
3、饮料送货车给大成饮食店送去24箱苹果汁和26箱橘子汁。每箱都是24瓶,一共有多少瓶?每箱饮料36元,付1500元够吗?
六、全课小结
请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?请大家想一想,我们是怎样发现乘法分配律的呢?
今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。
乘法分配律3
第一课时
教学目标:
1.使学生在解决实际问题的过程中发现并理解乘法分配律。
2.使学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.渗透从特殊到一般,再有一般到特殊这种认识事物的方法,使学生增强学习的兴趣和自信。
教学重点、难点:
引导学生发现和理解乘法分配律。
教学资源:
小卡片、计算器、多媒体课件、实物投影仪。
教学过程:
一、创设情境
1.同学们,我们已经学过了哪些运算律?今天,我们继续来探究发现有关乘法的新知识。 板:乘法
2.电脑出示例题图:
二、活动尝试
1.从题中你获得了哪些信息?白菜老师要我们解决什么问题?
2.你们会列综合算式解答吗?(学生各自独立计算)
3.交流反馈:谁来说说你是怎样做的?你是怎样想的?还有不同的解法吗?
65×5+45×5 (65+45)×5
=325+225 =110×5
=550(元) =550(元)
答:一共要付550元。
三、探索规律
1.师:从这里我们又一次感受到,解决同一个问题,咱们思考的角度与方法可以是多种多样的。这两种解法算式虽然不一样,但结果---(相等)。
2.那你会把这两道算式写成一个等式吗?
板:(65+45)×5= 65×5+45×5
3.师:如果这位阿姨买了3件短袖衫和3条裤子,一共要付多少钱?怎么列式?
板:(32+45)×3 32×3+45×3
你能猜猜这两个算式的结果有没有什么关系?可以怎样检验?
板:(32+45)×3=32×3+45×3
4.出示:(13+10)×2=?
你能口算出它的得数吗?你是怎样算的?谁能大胆猜想这个算式还可以怎样计算?怎样检验?
师:通过算一算可以检验算式是否正确。
5.请你小声读读上面三个等式,有什么发现?
6.同学们,刚才你们用这里的三个等式得出了结论,你们所发现的这个结论也许只是一种偶然现象,是一种猜想而已。你们想不想自己出题来验证?
板:猜想 验证
7.学生任意地写着算式,进行着计算。
8.汇报自己验证的结果。
教师结合学生回答板书这些例子:……
9.问:这样的等式能写完吗?你能用字母来表示这个规律吗?
生异口同声:(a+b)×c=a×c+b×c
10.师:用字母表示乘法中的这个规律,感觉怎样——(稍等)简洁、明了。这就是数学的美。
11.师:任何事物都可以从正反两方面去看,请你们反着读一读字母式子。
12.师:同学们,你们发现的这个规律叫乘法分配律,用字母表示就是----(学生齐说),你们能用自己的语言描述这个规律吗?请你们同桌互相说一说。(电脑出示乘法分配律)
13.师:乘法分配律是一个很重要的知识,运用广泛,甚至到了中学也要用到,所以我们一定要学好。下面我们就来运用这个规律完成一些练习。 板:应用
四、应用规律
1.想想做做第1题。
让学生填空后结合等式两边算式的特点说说自己的思考过程。
2.根据乘法分配律判断下面各题是否正确,并说明理由。
(40+3)×25=40×25+3×25 ( )
15×9+45×9=(15+45)×9 ( )
25×21=25×20+25 ( )
40×50+50×90=40×(50+90) ( )
5×(20+6)=5×20+6 ( )
3.选择。(请用手势表示正确答案的编号。)
下面与 25×(4×8)相等的算式是( )。
①25×4+25×8; ②25×4×25×8; ③25×4×8
五、总结拓展
1.请同学们回忆一下,这节课学习了什么?我们是怎么学的?这种学习方法你们有没有学会了?课后请你们用这种方法去研究一下除法中有没有这样的规律?
板书设计:
乘法分配律
猜想---验证---归纳---应用
(65+45)×5 = 65×5+45×5
(32+45)×3 = 32×4+45×3
(13+10)×2=13×2+10×2
……
(a+b)×c = a×c+b×c
先和 先两个积
《乘法分配律》数学教案4
教学内容:
教科书例6、例7及“做一做”,练习十四。
(一)知识教学点
1.使学生理解乘法分配律的意义。
2、掌握乘法分配律的应用。
(二)能力训练点
通过观察、分析、比较,培养学生的分析、推理和概括能力。
(三)德育渗进点
通过乘法分配律的应用,激发学生的学习兴趣。
(四)羹育渗遇点
使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。
指导学生观察、分析、讨论、实践,使学生感知乘法分配律。运用已有经验
(D识迁移类推,通过合作学习,学会知识。
1.教学重点:乘法分配律的意义及应用。
2.教学难点:乘法分配律的反应用。
小黑板(转板)、口算卡片、投影仪、投影片、红(白)方木块。
(一)锚垫孕伏
1.口算:(卡片)
25× 17×4 125×24
引导学生说一说运用了什么运算定律,这样计算有什么好处?
2.先口算,再把得数相同的两个算式用等号连接起来。(投影片)
(6+4)×5 6×4+4×5
(二)探究新知
1.导人新课:
前面我们已经学习了乘法的交换律、结合律,并且知道应用这些定律可使
一些计算简便。今天这节课,我们再学习乘法的分配律。(板书课题)
2.教学例5:
(1)出示例5:
(2)引导学生观察、讨论、交流。
(3)教师引导学生观察两种算式,发现了什么?使学生懂得:
①两个算式相等。
②两个算式可用等号连接。
学生答,教师板书:(18+7)×6=150
18×6+7×6二150
(]8+7)×6二18×6+7×6 .
(4)教师出示:20×(15+9)
20× 15+20×9=480
20×(15+9)二20×15+20×9
组织学生分组讨论,使学生明确:每组中算式所表示的意义。
反馈练习:按题目要求,请你说出一个等式。(投影出示)
(——+——)×——=——×——+——×——
学生答,教师填写投影。
(通过学生的观察、分析、实践,使学生初感乘法分配律的知识,填空题的发
散思维训练,让学生拥有足量的感性材料,使得学生对乘法分配律知识的获捐
达到水到渠成。)
教师;像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
教师进一步引导学生观察等号左右两边算式的规律性,使学生明确:
①两个数的和同一个数相乘。(教师引导学生明确:“相乘”指不固定被乘
数和乘数的位置。)
②两个加数分别同一个数相乘再把两个积相加。
③等号左右两边两个算式相等。
3.概括定律:
通过学生观察比较,启发学生用数学语言概括乘法分配律的内容。让学生
结合板书理解乘法分配律的概念,然后再引导学生回答其内容,加以巩固。
4.反馈练习:
横线上能填几?为什么?
(32+35)×4二——×4+——×4
(62+12)×3=——×——+——×——
教师:启发学生用字母表示乘法分配律的内容并指名板演,提示学生3个
数可分别用o、b、c表示。然后,让学生说明算式的意义。这时,教师再提醒学
生还有没有别的写法。通过教师引导学生答出a×b×c=a×(b×c)问学生根据是什么?(乘法交换律,或用相乘来解释)
5.我们知道用乘法交换律和乘法结合律可以使一些计算比较简便。同学
们观察我们练习的乘法结合律,在运算上有什么特点?
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加
数分别同这个数相乘,再把两个积相加比较简便。
6.教学例7:
(1)出示例7:
102×43
=(100+2)×43
=4300+86
=4386
想:把102看成(100+2),再用43分别去乘100和2,可以用口算
用了乘法结合律。
教师说明:熟练后第二步可以不写,画上虚线。
(2)出示9×37+9×63
①组织同学讨论。
②组织同学阅读教科书第65页。
③启发学生明白了什么?
(乘法分配律的应用,学生有些经验,再加上乘法交换律、结合律的学习,学
生知识迁移类推,通过合作学习,能够自己学会新知。)
(三)巩固发晨
1.练习十四第1题。
2.在横线上填上适当的数。
(”(24+8)×125=一×一+一×一
(2)25×(20+4)=25×——+25×——
(3)45×9+55×9=(——+——)×——
(4)8×27+73×8=8×(——+——)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相
同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。
3.把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×5 24×5+24×8
(3)20×(17+15) 20×17+20×15
(4)(40+28)×5 40×5+28
(5)(10×125)×8 - 10×8+125× 8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42十29)与下面的( )相等
①28×42+28×29 ②(28+42)×(28+29)
(2)与6×8—6×8相等的式子是( )
(3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9
5.练习十四第4题,投影出示。
6,分组计算练习十四第3题。
(四)课堂小结
③28×42×29
今天学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分
别与一个数相乘,再把两个积相加。
练习十四第2题