首页 > 学习资料 > 教案大全 >

《多边形的内角和》公开课教案精编3篇

网友发表时间 566432

【路引】由阿拉题库网美丽的网友为您整理分享的“《多边形的内角和》公开课教案精编3篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

多边形的内角和教学设计1

[教学目标]

知识与技能:

1、会用多边形公式进行计算。

2、理解多边形外角和公式。

过程与方法:

经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。

情感态度与价值观:

让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。

[教学重点、难点与关键]

教学重点:多边形的内角和。的应用。

教学难点:探索多边形的内角和与外角和公式过程。

教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决。

[教学方法]

本节课采用“探究与互动”的教学方式,并配以真的情境来引题。

[教学过程:]

(一)探索多边形的内角和

活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。

活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?

多边形边数分成三角形的个数图形

内角和计算规律

三角形31180°(3-2)·180°

四边形4

五边形5

六边形6

七边形7

。。。。。。

n边形n

活动3:把一个五边形分成几个三角形,还有其他的分法吗?

总结多边形的内角和公式

一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。

巩固练习:看谁求得又快又准!(抢答)

例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?

(点评:四边形的一组对角互补,另一组对角也互补。)

(二)探索多边形的外角和

活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和。五边形的外角和等于多少?

分析:(1)任何一个外角同于他相邻的内角有什系?

(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?

(3)上述总和与五边形的内角和、外角和有什么关系?

解:五边形的外角和=______________-五边形的内角和

活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?

也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的外角和等于_________。

结论:多边形的外角和=___________。

练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。

练习2:正五边形的每一个外角等于________,每一个内角等于_______。

练习3.已知一个多边形,它的内角和等于外角和,它是几边形?

(三)小结:本节课你有哪些收获?

(四)作业:

课本P84:习题的2、6题

附知识拓展—平面镶嵌

(五)随堂练习(练一练)

1、n边形的内角和等于__________,九边形的内角和等于___________。

2、一个多边形当边数增加1时,它的内角和增加()。

3、已知多边形的每个内角都等于150°,求这个多边形的边数?

4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()

A:360°B:540°C:720°D:900°

5、已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数?

以上就是差异网为大家整理的3篇《《多边形的内角和》公开课教案》,希望可以对您的写作有一定的参考作用。

多边形的内角和教学设计2

教学过程

(一)创设问题情境,引出新课。

1、以疑导入,引发求知欲。先展示六螺帽,八角石英钟、多边形水果盘等多边形实物。由此激发学生自己要设计,怎样设计的求知欲。然后提出具体问题。

引题:我们学校要准备建造一个各边长为5米,各内角都相等的十二边形花坛。问各角是多少度?

2、复习提问,知识巩固。

⑴三角形内角和等于多少度?

⑵四边形内角和定理以及推导方法。

3、引入新课

上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题(板书课题)。

(二)引导探索,研讨新知

1、以动激趣,浅探求知。

一画:画三角形、四边形、五边形、六边形(让学生自己动手画)。

二量:量出五边形、六边形各内角,并求出其和(让学生自己求知)。

三比较:比较四边形、五边形、六边形分别是三角形内角和的多少倍,并由此去探索他们之间的初步规律。

2、观察联想,启迪思维。

(三)回顾小结,验收成效

1、已知边数如何求内角和;

2、已知内角和如何求边数;

3、n边形的内角和与外角和成一定的比例关系,求其n边形的边数。

(四)课后作业(教材P91习题第8、9题)

多边形的内角和教学设计3

学情分析:

学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。

教学目标:

1、知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。

2、过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。

3、情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。

教学重点:

多边形的内角和公式。

教学难点:

探索多边形的内角和定理的推导

教学过程:

一、创设情境,导入新课

1、请看:我身后的建筑物是什么?─水立方。我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)

这节课咱们一起来探究《多边形的内角和》。

二、合作交流,探究新知

1、多边形的内角和

问:要求内角和你联想到什么图形的内角和?(示三角形的内角和定理)。如果两个三角形能够拼成四边形,你能求出四边形的内角和是多少度呢?

预设回答:三角形的内角和360°。四边形的内角和360°

知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”

教学说明“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决。

2、是否所有的多边形的内角和都可以“转化”为两个三角形的内角和来求得呢?如何“转化”?

预设回答:能,可以引对角线,将多边形分成几个三角形。

让学生合作交流讨论,展示探究成果。教材第35页“探究”

示图,取多边形上任意一个顶点,连接除相邻的两点,则多边形的内角和可转化为三角形内角和之间的关系,

多边形边数可分成三角形的个数多边形的内角和56 7┅┅┅┅n边形n

n边形有几个内角?是否可以“转化”为多个三角形的角来求得呢?如何“转化”?

预设回答:有n个内角,可以转化多个三角形来求,n边形可以引n-3条对角线,即有n-2个三角形。所有n边形的内角和等于(n-2)x180°

教学说明通过五边形、六边形、七边形、八边形等特殊多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的`数学推理过程和数学思考方法。

例:教材第36页例1

教学说明让学生利用多边形的内角和公式求一个多边形的内角和或它的边数,加深知识的理解与运用。

三、课堂演练

1、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()

A.十三边形B.十二边形

C.十一边形D.十边形

2、十二边形的内角和为,已知一个多边形的内角和是1260°,则这个多边形的边数是。

教学说明由学生自主完成,教师及时了解学生的学习效果,让学生经历运用知识解决问题的过程。对需要帮助的学生及时点拨并加以强化。在完成上述题目后,让学生完成练习册中本课时的对应训练部分。

四、课时小结

1、这节课你有什么新的收获?

五、布置作业

教材第36页练习1、2题。

六、板书设计多边形的内角和n边形内角和等于(n-2)×180°。

多边形的内角和是180的倍数;

边数越多,内角和就越大;

每增加一条边,内角和就增加180度。

相关推荐

热门文档

20 566432