首页 > 工作范文 > 心得体会 >

多边形的内角和教案(优推10篇)

网友发表时间 2020975

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“多边形的内角和教案(优推10篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

多边形的内角和教案【第一篇】

我说课的内容是人教版七年级(下)册第七章第三节《多边形及其内角和》的第二课时。我将在新课程理念的指导下从以下七个方面进行说课。

多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,对发展学生的空间观念和几何直觉有很大的帮助。

1、我所任教的班级,大部分学生来自农村,由于自小独立性较强,具有较强的理解能力和应用能力,喜欢合作讨论,对数学学习有较浓厚的兴趣。大部分学生学习习惯和学习方式较好。

2、本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割“多边形为三角形”这一过程会是学生学习的难点,在探究的过程中教师要想办法把难点分散,有利于学生对本课知识的学习和掌握。

新的课程标准注重学生经历观察、操作、猜想、归纳等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点、难点。

知识与技能。

数学思考。

(1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

解决问题。

通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。

情感态度。

1、通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。

2、体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。并在探索过程中激发、培养学生的爱国主义热情。

基于以上教学目标,我确定以下教学重难点:

教学难点探究多边形内角和时,如何把多边形转化成三角形。

因此,本节课我借助课件辅助教学,可以更好的突破重难点,增强直观效果,丰富学生的感性认识,提高课堂效率。

本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

1.教学方法:

根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。

2.学习方法:

利用学生的好奇心设疑,解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

1、环节一:创设情景、引入新课。

情景:请学生观察“上海世博园”的宣传视频。

从“情境认知理论”得知:图文加情境能有效提高课堂教学效率,而图文和情境并用可使效率提高到300%。通过观看上海世博园视频,能激发学生的爱国主义热情,并引导学生大胆提出问题,对建筑物的外观抽象成已知的三角形、长方形、正方形等多边形。提出问题:三角形的内角和是多少?设计这个问题的目的是因为探索多边形内角和与边数关系的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。接下来提出问题,正方形、长方形的内角和是多少?学生回答后进入新课内容,根据三角形的内角和是个确定值,引导学生猜想任意四边形的内角和是多少?唤醒学生已有知识,将有助于本堂课问题的解决,也为后面习题作铺垫。

2、环节二:合作交流、探索新知。

活动1:

猜一猜:围绕“任意四边形的内角和等于多少度?”这一问题引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。

议一议:你是怎样得到的?你能找到几种方法?这个环节学生可能出现“度量”、“剪拼”、“作辅助线”等等甚至更多的方法。为此我又抛出问题:五、六、七边形的内角和怎么求?你发现了什么?通过这个问题让学生自然过渡到用作辅助线的方法求多边形的内角和,同时也要告诉学生在测量和剪拼活动中可能会产生误差,由此感受到作辅助线在解决几何问题中的必要性。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。

针对不同层次的学生,要适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生表达自己解决问题的方法,并用电脑演示四边形分割成三角形的多种方法让学生体验数学活动充满探索,体验解决问题策略的多样性。

想一想:这些分法有什么异同点?学生积极思考,大胆发言,教师给予适当的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形分割的关键在于公共点的选取,并演示公共点在图形内、外、顶点处。利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。

活动2:

做一做:选一种你喜欢的上述分割的方法,类比求四边形的内角和方法求五边形、六边形、七边形等的内角和,让学生再一次经历转化的过程,加深对转化思想的理解,通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的理解,体会由简单到复杂,由特殊到一般的思想方法。

议一议:

问题1:对比上面探究四边形内角和的过程,你能得出五边形的内角和?六边形的内角和?

问题2:能否采用不同的分割方法来解决这些问题?

活动3:

尝试完成第五列n边形的探究。

但是学生有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,边数每增加1条内角和就增加180°。但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。

练一练:为了使学生达到对知识的巩固与应用,我特地设计了一组(5个)即时抢答题,通过这些题目学生当堂训练、独立计算,并根据学生都喜好竞赛的特点,采用抢答式完成。运用所学公式解决问题并巩固、理解、记忆公式。

抢答:

(1)过一个多边形一个顶点有10条对角线,则这是边形.

(2)过一个多边形一个顶点的所有对角线将这个多边形分成五个三角形,则这是边形.

(3)多边形的内角和随着边数的增加而,边数增加一条时它的内角和增加度。

3、环节三:例题讲解,知识巩固。

在此,我设计了2个例题,并对教科书上的例题作了较小的改动,书上的例1简略讲解,这个例题就是对四边形的内角和的简单应用,对于学生来说比较简单;对于例2我把书后面的85页习题第9题变成例题,这一道题目具有较好的典型性,特别是知识间的融会贯通,主要要求学生掌握:三角形、五边形的内角和,正五边形等相关知识。

4、环节四:分组竞赛、情感升华。

(1)智慧大比拼。

内容:p87的练习分成2类。

通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。

(2)拓展探究。

小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。

(3)情系世博。

引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。

5、环节五:畅所欲言、分享成果。

请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。通过这个环节使学生这节课所学的知识系统化,从感性认识上升为理性认识。

6、环节六:布置作业、课后提升。

(1)习题第2题、第4题。

(2)选做题:用另外两种作辅助线的方法证明多边形内角和定理。

采用分层布置作业,让不同水平的学生得到不同的发展,培养学生的思维灵活性及成就感,从而贯彻因材施教的原则。

评价学生,不仅仅是一个手段和结果,它对学生的人格、个性的发展有着极其重要的作用。新课程对课程的评价应把握形成性、发展性评价和终结性评价相结合,在实践中我打算在课堂上从以下几个方面进行评价:

1、评价在学习中各种能力〈如表达、想象、动手、思维、自学能力等〉的发展情况。

2、评价学习过程中的创新表现。

3、评价在学习过程中对身边事物、社会现实的关注程度。

评价必须最大限度地考虑最终结果,要以培养学生的荣誉感、自尊心和进取心为目的,使其产生获取成功的动力。

最后,我的板书设计力求简洁明了,便于学生观察比较、归纳总结,并体现教师的示范作用,突出本堂课的重难点,及主要的思想方法。

多边形的内角和教案【第二篇】

我说课的内容是人教版七年级(下)册第七章第三节《多边形及其内角和》的第二课时。我将在新课程理念的指导下从以下七个方面进行说课。

多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,对发展学生的空间观念和几何直觉有很大的帮助。

1、我所任教的班级,大部分学生来自农村,由于自小独立性较强,具有较强的理解能力和应用能力,喜欢合作讨论,对数学学习有较浓厚的兴趣。大部分学生学习习惯和学习方式较好。

2、本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割“多边形为三角形”这一过程会是学生学习的难点,在探究的过程中教师要想办法把难点分散,有利于学生对本课知识的学习和掌握。

新的课程标准注重学生经历观察、操作、猜想、归纳等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点、难点。

知识与技能。

数学思考。

(1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

解决问题。

通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。

情感态度。

1、通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。

2、体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。并在探索过程中激发、培养学生的爱国主义热情。

基于以上教学目标,我确定以下教学重难点:

教学重点。

教学难点。

探究多边形内角和时,如何把多边形转化成三角形。

因此,本节课我借助课件辅助教学,可以更好的突破重难点,增强直观效果,丰富学生的感性认识,提高课堂效率。

本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

1、教学方法:

根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。

2、学习方法:

利用学生的好奇心设疑,解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

1、环节一:创设情景、引入新课。

情景:请学生观察“上海世博园”的宣传视频。

从“情境认知理论”得知:图文加情境能有效提高课堂教学效率,而图文和情境并用可使效率提高到300%。通过观看上海世博园视频,能激发学生的爱国主义热情,并引导学生大胆提出问题,对建筑物的外观抽象成已知的三角形、长方形、正方形等多边形。提出问题:三角形的内角和是多少?设计这个问题的目的是因为探索多边形内角和与边数关系的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。接下来提出问题,正方形、长方形的内角和是多少?学生回答后进入新课内容,根据三角形的内角和是个确定值,引导学生猜想任意四边形的内角和是多少?唤醒学生已有知识,将有助于本堂课问题的解决,也为后面习题作铺垫。

2、环节二:合作交流、探索新知。

活动1:

猜一猜:围绕“任意四边形的内角和等于多少度?”这一问题引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。

议一议:你是怎样得到的?你能找到几种方法?这个环节学生可能出现“度量”、“剪拼”、“作辅助线”等等甚至更多的方法。为此我又抛出问题:五、六、七边形的内角和怎么求?你发现了什么?通过这个问题让学生自然过渡到用作辅助线的方法求多边形的内角和,同时也要告诉学生在测量和剪拼活动中可能会产生误差,由此感受到作辅助线在解决几何问题中的必要性。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。

针对不同层次的学生,要适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生表达自己解决问题的方法,并用电脑演示四边形分割成三角形的多种方法让学生体验数学活动充满探索,体验解决问题策略的多样性。

想一想:这些分法有什么异同点?学生积极思考,大胆发言,教师给予适当的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形分割的关键在于公共点的选取,并演示公共点在图形内、外、顶点处。利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。

活动2:

做一做:选一种你喜欢的上述分割的方法,类比求四边形的内角和方法求五边形、六边形、七边形等的内角和,让学生再一次经历转化的过程,加深对转化思想的理解,通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的.理解,体会由简单到复杂,由特殊到一般的思想方法。

议一议:

问题1:对比上面探究四边形内角和的过程,你能得出五边形的内角和?六边形的内角和?

问题2:能否采用不同的分割方法来解决这些问题?

活动3:

尝试完成第五列n边形的探究。

但是学生有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,边数每增加1条内角和就增加180°。但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。

练一练:为了使学生达到对知识的巩固与应用,我特地设计了一组(5个)即时抢答题,通过这些题目学生当堂训练、独立计算,并根据学生都喜好竞赛的特点,采用抢答式完成。运用所学公式解决问题并巩固、理解、记忆公式。

抢答:

(1)过一个多边形一个顶点有10条对角线,则这是边形。

(2)过一个多边形一个顶点的所有对角线将这个多边形分成五个三角形,则这是边形。

(5)一个多边形的内角和等于720度,那么这个多边形是边形。

3、环节三:例题讲解,知识巩固。

在此,我设计了2个例题,并对教科书上的例题作了较小的改动,书上的例1简略讲解,这个例题就是对四边形的内角和的简单应用,对于学生来说比较简单;对于例2我把书后面的85页习题第9题变成例题,这一道题目具有较好的典型性,特别是知识间的融会贯通,主要要求学生掌握:三角形、五边形的内角和,正五边形等相关知识。

4、环节四:分组竞赛、情感升华。

(1)智慧大比拼。

内容:p87的练习分成2类。

通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。

(2)拓展探究。

小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。

(3)情系世博。

引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。

5、环节五:畅所欲言、分享成果。

请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。通过这个环节使学生这节课所学的知识系统化,从感性认识上升为理性认识。

6、环节六:布置作业、课后提升。

(1)习题7。3第2题、第4题。

(2)选做题:用另外两种作辅助线的方法证明多边形内角和定理。

采用分层布置作业,让不同水平的学生得到不同的发展,培养学生的思维灵活性及成就感,从而贯彻因材施教的原则。

评价学生,不仅仅是一个手段和结果,它对学生的人格、个性的发展有着极其重要的作用。新课程对课程的评价应把握形成性、发展性评价和终结性评价相结合,在实践中我打算在课堂上从以下几个方面进行评价:

1、评价在学习中各种能力〈如表达、想象、动手、思维、自学能力等〉的发展情况。

2、评价学习过程中的创新表现。

3、评价在学习过程中对身边事物、社会现实的关注程度。

评价必须最大限度地考虑最终结果,要以培养学生的荣誉感、自尊心和进取心为目的,使其产生获取成功的动力。

最后,我的板书设计力求简洁明了,便于学生观察比较、归纳总结,并体现教师的示范作用,突出本堂课的重难点,及主要的思想方法。

板书设计:

以上是我对本节课的设计说明,从说教材、说学情、说教法、说学法、说教学程序上说明这节课“教什么”和“怎么教”,并且阐明了“为什么要这样教。我的说课到此结束,谢谢大家。

多边形的内角和教案【第三篇】

教学目标:

1、经历认识多边形的过程,能够初步认识四边形、五边形、六边形等平面图形。

2、进一步增强动手操作能力、语言表达能力和发散思维能力。

3、在学习活动中增强对数学的兴趣,培养交往、合作意识。

教学重点:让学生通过观察、比较、合作交流等活动认识四边形、五边形、六边形等平面图形。

教学难点:理解边的概念明白图形按边的数量分类、命名的意义。

教学准备:教师准备板书贴图、多媒体课件、长方形和正方形的纸各一张。学生每人准备长方形和正方形的纸各一张,8根小棒,一把剪刀。

教学过程:一、创设情境,激起兴趣1、谈话:小朋友们,今天我们教室里来了一位新朋友,瞧,它是谁?(多媒体出示)谈话:喜洋洋新盖的房子里可漂亮了!大家想不想去看看?(多媒体出示图片)喜洋洋的新房子上藏着许多我们已经学过的图形,你能认出来吗?(教师指,学生回答)。今天这节课呢!我们继续来认识图形。2、谈话:为了装修新房子啊,喜洋洋还买来了这两种形状的地砖,瞧!(电脑出示)地砖的面是什么形状呢?生回答,是:长方形和正方形。(贴出长方形和正方形)。

二、操作观察,探索新知1、认识四边形小朋友,长方形、正方形就像兄弟两个,他们还有个共同的名字呢?你们知道吗?猜猜看?指名几人猜一猜(四边形)。你们为什么称它是四边形呢?指名学生说。教师赞同学生的意见,同时板书“四边形”。知道长方形、正方形可以叫四边形。那好,我们就先一起来数一数长方形的四条边。(1)操作:请大家拿出长方形的彩纸,用左手竖直举在面前。师示范摸一条边,这就是长方形的一条边。请小朋友自己摸一摸、数一数长方形有几条边。反馈:你是怎么数的'?指名2个学生上台数。(可能会有不同的数法,要肯定有顺序数的一种,同时强调要记住第一条在哪里)。跟着电脑一起有顺序的数。

(2)那正方形呢?你也能来数一数正方形有几条边吗?请一人上黑板前指。电脑演示。小结:通过数,我们知道长方形和正方形各有四条边,它们都是四边形。

2、练一练(1)问:小朋友想一想,我们学过的图形里,还有哪个也是四边形?

指名学生回答(平行四边形,出示)。(贴出平行四边形的图片)。

(1)认一认谈话:喜洋洋搬运时不小心把瓷砖打破了几块,老师选了2块,把它们的形状描下来了,看看,它们有几条边?是几边形呢?(贴出书上的五边形)你能来指出它们的五条边吗?指名上台指,第1个由1人指,第2个由1人带领全班一起数。小结:这两个图形各有五条边,叫做五边形。

(3)搭一搭五边形和六边形还有其他样子的吗?(有)先请小朋友先认真的想一想。操作:请同桌两个小朋友一人搭五边形,一人搭六边形,看看最少要用多少根小棒?学生活动,一组同桌在实物投影上搭。问一问用了几根小棒。小结:我们用5根小棒,做五边形的5条边,用6根小棒,做六边形的6条边,搭出了五边形和六边形。小棒收起,推至桌角。

三、实践运用,巩固新知。1、问:我们已经认识了四边形、五边形和六边形,现在它们在一起聚会了,你还能分得清吗?出示第3题。一人读要求,解释题意。独立在作业纸上完成。指名回答。

2、小朋友分得真清楚,它们还会在一起变魔术呢。四边形可以变成五边形,五边形可以变成六边形,六边形又能变成四边形,你相信吗?请小朋友拿出一张长方形纸,先自己试一试。然后教师电脑屏幕演示,学生完成填空。

3、刚才的折纸有趣吗?再来看,我这里还有一张正方形纸,如果从上面剪去一个三角形,剩下的是什么图形呢?猜猜看。(先在脑海里想象一下,它剩下的会是什么图形呢?先请小朋友认真的想一想。指名回答。那怎样剪是四边形,怎样剪是五边形呢?请你拿出剪刀,来试一试吧。学生操作,师挑选好的贴上黑板。

4、刚才我们活动开展的热热闹闹,现在,我们要来安静的读题、做题,能做到吗?出示第5题。把下面每个图形都分成三角形,最少能分成几个?审题。这句话里要注意什么?试画第一个,猜猜看,可以怎么画,最少分成几个三角形?指名回答,师画。第二、三个学生独立完成,2人板演,反馈。(优化方法)。

四、全课总结。通过今天的学习你有什么收获呢?你是怎样来区分的呢?猜猜看,还会有几边形呢?我们把这些图形呢统称为多边形。(揭题:认识多边形)。

五、作业布置。

在生活中有许多这样的图形,请小朋友们找一找,并向爸爸妈妈介绍一下。

多边形的内角和教案【第四篇】

(2)怎样才能知道一个图形是几边形呢?也就是说如果有四条边围成的图形就是四边形,五条边围成的图形呢?六条?七条呢?也就是说有几天边围成的图形就是几边形。

(3)像这样边数比较多的图形,我们给他们一个统一的名字叫多边形,今天我们就认识了这些多边形(板书课题)。

三、巩固练习、提升拓展。

1、数一数。

瞧,这是几边形?(六边形),六边形有几条边?那咱们就在中间写上6。那数数下面的图形各有几条边,照样子写在图形上。

谁来校对?按顺序说是每个图形分别有几条边?都对吗?真棒!

接下来,数一数每种图形分别有几个,填在表格里。谁来说?跟着数一数,四边形:1、2、3、4,4个。五边形:1、2、33个。六边形:1、22个。有数错的吗?没有?都对了!真棒!像这样做上标记,就不会数错和遗漏了。作业纸放回原地,看谁做的好!

2、围一围。

认识了这么多的多边形,知道老师喜欢哪一个吗?仔细看(示范围)现在,你知道我喜欢的多边形是?(五边形)对了,你也想围一围吗?先想一想你最喜欢几边形,然后动手围一围。

谁来展示一下自己围的作品,大声告诉大家你喜欢的是什么图形。

(1)、你围的是?数数它的边?对吗?也喜欢四边形的吧作品举高,向大家展示一下你的作品!

(2)还有喜欢其他图形的吗?一一交流展示。

3、折一折。

小朋友们的动手能力真不错,接下来老师要考考你们,看看你们是否既会动手又会动脑。看,出示正方形纸,老师演示,我折了一个(三角形)反过来,剩下的是(五边形),你能折一个比老师大的三角形吗?反过来数一数,折掉一个三角形后剩下的是什么图形。

谁来说,你折掉一个三角形后剩下的是几边形?

预设一:跟老师一样。折出一个三角形,剩下的`是五边形。

预设二:我这样折一个三角形(对角线折),剩下的还是三角形。你真棒!

预设三:我这样折一个三角形,剩下的是一个四边形。哦,了不起!

真是一群小巧手!小朋友们太厉害了!想到了三种折法(课件同步展示三种不同的折法)是呀!同样的正方形纸,当折掉的三角形越来越大,剩下的图形就可能不一样!

4、找一找。

图形宝宝们看见小朋友们玩得这么开心,它们也玩起了捉迷藏的游戏,从图中能找到几边形?(四边形)你能找到几个?(点击出示题目)看谁找的多?作业纸第3题,开始。

汇报、交流:(1)生:5个。师:(怀疑)5个呐?我只找到4个1。2。3。4生:还有一个最大的。哦,你比老师厉害,还多找了一个,你看他找的多不多!不多呀?还有?(疑惑)。

(2)生:7个。师同(1)的步骤教学。如果在5个的基础上,就:又多了两个,你来指一指多的两个在哪?看明白了吗?他把两个小的四边形合成了一个大四边形,你更厉害!找到了7个。还有?(更疑惑)。

(3)生:9个。直接说9个的,还是同(1)的步骤教学。如果在(2)的基础上,就:比7个还多2个,还有两个在哪?你来指一指。你是真的厉害,找到了9个四边形,佩服!你们都看明白了吗?来,咱们一起再来有序的数一数:1个,2个,3个,4个,两个两个的合并,横着看:这是第5个,第6个。再竖着看:第7个,第8个。还有一个最大的,第9个。(5,6,7,8,9数慢一点)原来里面一共藏了9个四边形呢!刚才找到9个的小朋友举手,你们真棒!

四、课堂小结展示生活中的多边形。

小朋友们,今天,咱们认识了图形王国里的?手指板书:(四边形,五边形,六边形),以后还会有更多的图形。这些变化多样的图形点缀了我们的生活,劳动人民用他们的智慧创造了这美丽的图案,瞧,这是古代园林的窗格图,里面的图形可丰富了!课后用你的双眼仔细观察,长大以后,创造更美好的生活!谢谢大家!

多边形的内角和教案【第五篇】

本节课从复习旧知入手,在引课时提问三角形的相关知识,让学生在思想上对本节课产生兴趣,并且会觉得知识点不是很难,提高学生的学习兴趣,同时加强了数学与实际生活的联系,让学生感到数学离自己很近,激发了学生的求知欲,创设了良好的教学氛围。其次注重让学生在学习活动中领悟数学思想方法。数学的思想方法比有限的数学知识更为重要。学生在探索多边形内角和的过程中先把五边形转化成三角形.进而求出内角和,这体现了由未知转化为已知的思想。特别是在课堂教学中适时的.利用问题加以引导,使学生领会数学思想方法,真正理解和掌握数学的知识、技能,增强空间观念及数学思考能力培养,并获得数学活动经验。同时,恰当的使用课件扩大了课堂容量,使课堂教学的深度和广度都有所提高。交互式电子白板在本节课中的应用更加形象直观的让学生观察到多边形的内角和,提高了课堂效率,为学生的探索讨论赢得了时间。同时也加大了练习量,有助于学生知识可巩固和提高。

整节课学生的情绪饱满,思维活跃,在教师适当的引导下,学生能够合作交流和自主探究,成功的探索出了多边形的内角和公式,较好的完成了本节课的教学目标。

不足之处:

1.本节课给学生提供的探究思考与交流的时间比较充足,但展示交流的机会不够充分,并且个别学生没有很好的融入课堂,游离于课本之外。

2.本节课学生小组活动的准备、具体实施、归纳交流、评价等环节设计不够完善。

多边形的内角和教案【第六篇】

1、通过测量、类比、推理等数学活动,探索多边形的内角和的公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

2、通过把多边形转化成三角形体会转化思想在几何中的应用,同时。

时让学生体会从特殊到一般的认识问题的方法。

3、通过探索多边形内角和公式,让学生逐步从实验几何过度到。

论证几何。

解决问题。

通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效的解决问题。

情感态度。

通过对生活中数学问题的探究,进一步提高学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,感受数学活动的重要意义和合作成功的喜悦,提高学生学习的热情。

重点。

难点。

知识联系。

多边形的对角线和三角形的内角和为本节课的知识做了铺垫,本节课的内容为多边形的外角和做知识上的准备。

知识背景。

对多边形在生活中有所认识。

学习兴趣。

通过探究过程更能激发学生学习的兴趣。

教学工具。

三角板和几何画板。

教学流程设计。

活动流程图。

活动内容和目的。

活动一,教师和学生任意画几个多边形,用量角器测其内角和。

文档为doc格式。

多边形的内角和教案【第七篇】

尊敬的各位领导:

老师大家好!

由我为大家介绍我们工作坊团队成员共同设计的《多边形的内角和》一课。我将从教材思考、学生调研、教学目标完善、教学过程设计等方面进行汇报。

《多边形的内角和》是冀教版小学数学四年级下册第九单元探索乐园的第1课时,本单元要求是“在问题探索中,促进数学思维发展”。实现“不同的人在数学上得到不同的发展”是《数学课程标准》的基本理念,“发展合情推理和演绎推理能力”“清晰地表达自己的想法”“学会独立思考、体会数学的基本思想和思维方式”是课程标准关于数学思考方面的具体要求。

教材安排了两个例题,一是探究多边形边数与分割的三角形个数的规律,二在分割三角形的基础上探索多边形内角和。为了促进学生思考的连续性与有序性,我们将教材中的两个例题进行有机结合,在充分研究四边形五边形内角和方法的基础上提出如何得出任意多边形内角和问题,为发展学生的数学思维提供素材、创造探索的空间,让学生充分体会“画线段—分割三角形—求内角和”这样一个连续推理归纳得出规律的活动。

学生在本册第四单元认识了三角形、知道三角形内角和等于180度,会用字母表示数、字母表示数量关系的基础上进行学习的。我们团队的成员对所在学校四年级同学进行了调研,发现他们对于数学问题具有“猜想”的意识,但是缺乏理性的思考。他们愿意自己动手尝试探索研究问题,但是对于探索之后有序思考、归纳总结认识还不够全面。

有了以上分析,我们在尊重教材的基础上,确定了本节课教学目标,并对“过程与方法”目标进行了完善补充。

知识与技能:探索并了解多边形的边数与分割成的三角形个数,以及内角和之间隐含的规律;能运用多边形的内角和知识解决相关问题。

过程与方法:学生经历探索的全过程,积累探索和发现数学规律的经验,让学生尝试从不同的角度寻求解决问题的方法,体会从特殊到一般的认识问题的方法,发展理性思考。

教学难点:字母表达式的总结

教学准备:教师准备三角形、四边形、五边形、六边形图片,裁纸刀,课件。

学生学具准备四边形、五边形等多边形图片模型,三角板。

教学过程共分为四个环节。

教学过程:

一、创设情境,回顾三角形知识---注重知识的“生长点”

同学们请看这是什么图形?你了解它吗?你能向大家介绍三角形哪些知识?(这样设计意图是注尊重学生已有知识经验,体会数学知识的内在联系,重点认识三角形内角的含义及三角形内角和是180度的特点)

我们知道了三角形内角和是180度,那么四边形,五边形的内角和是多少度呢?这节课我们就一起来研究。

二、自主合作,探究新知—注重“数学算法的优化”共设计了三个探究活动。

1、四边形内角和

(1)有同学愿意猜想四边形内角和吗?猜想也要有根据,你能说说你的根据吗?(引导学生体会理性思考)

有没有同学一看到四边形就马上想到360度呢?你是根据哪个图形直接想到的?(让学生借助已有的长方形、正方形知识进行理性推理,打通新旧知识之间联系)

我们通过计算长方形、正方形的内角和是360度,是不是能说明所有四边形内角和都是360度?(引导学生体会这是一种“假设”因为它是特殊图形中做的成“猜想”)

我们需要研究怎样的图形才能发现它们一般的特征和规律?(任意四边形)

(2)小组活动,利用学具中的任意四边形想办法计算内角和。师巡视(注意学生不同的方法)

(3)学生汇报。可能有计算法,引导学生起名字“量角求和法”

撕角法,起名字“拼角求和法”。

切割法1,起名字“一分为二求和法”(学生演示这种方法时,教师帮忙切割,强调弄清楚四个内角怎样变成六个角,分成了几个三角形,一是画了一条线段,二是分成了二个三角形)

归纳总结:四边形内角和是360度。(通过不同的个性方法,验证四边形内角和,进一步认识内角含义,感受不同算法的好处)

2、五边形内角和

今天的研究我们就停在这里吗?根据经验,我们要向什么挑战?(五边形)你能猜想它是多少度吗?请你选择一种方法,证实你的猜想。

总结:看来数学的方法有很多,但是有的方法有局限性,有的方法只适合三角形和四边形,量角有误差,拼角法有的会超过360度,而第三种看起来最简便。我们称之为“优化法”

列出算式:180x3=540度(学生不仅在计算度数上有了经验,而且在计算方法上也有了经验)

利用这种最优的方法,同桌同学互相说一说,四边形和五边形各画了几条线段,分割成几个三角形,怎样求内角和?(设计意图是让学生对探究过程进行归纳整理,为进一步有序的研究其他图形指明研究方向。)

现在我们就来看一看其他图形是不是也有这样的规律?

3、六边形、七边形内角和

小组合作,自己完成探究过程,填写表格。

学生汇报,总结画出的线段数和三角形个数之间联系。

三、归纳总结,形成规律---注重字母表达式的推理

通过大家的研究,找到了规律,请问10边形,能画几条线段,分成几个三角形?

90边形?100边形?n边形呢?(老师说我们研究三角形的个数,怎么去找边数的呢?学生说分割出的三角形的个数跟边数有关。那一千边形形,n边形呢?n-2得到的是什么?得到分成的三角形的个数。)

师:今天你学到了什么?在今天的研究中哪些知识或研究的过程给你留下了深刻的印象?师:今天我们所研究的多边形都是凸多边形,还有一种多边形,它们叫做凹多边形,你能不能运用今天的研究方法,探究凹多边形的内角和吗?老师期待你在课后的研究成果。(设计意图是不仅让学生对本节课知识进行总结,也对数学的思想方法进行回顾,鼓励学生利用这些思想方法向类似数学问题挑战,以达到学以致用的目的。)

以上是我们对这节课的粗浅设计,恳请大家给予批评指正,谢谢!

多边形的内角和教案【第八篇】

课件要具有可教性。制作多媒体课件的目的是优化课堂教学结构,提高课堂教学效率,既要有利于教师的教,又要有利于学生的学,所以制作的课件要与课堂内容有密切联系,具有教导积极向上意义。

[教学目标]。

1.了解多边形及有关概念,理解正多边形及其有关概念.。

2.区别凸多边形与凹多边形.。

[教学重点、难点]。

1.重点:

(1)了解多边形及其有关概念,理解正多边形及其有关概念.。

(2)区别凸多边形和凹多边形.。

2.难点:

[教学过程]。

一、新课讲授。

投影:图形见课本p84图7.3一l.。

你能从投影里找出几个由一些线段围成的图形吗?

上面三图中让同学边看、边议.。

在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?

(1)它们在同一平面内.。

(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.。

这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

提问:三角形的定义.。

你能仿照三角形的定义给多边形定义吗?

1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.。

如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)。

2.多边形的边、顶点、内角和外角.。

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.。

让学生画出五边形的所有对角线.。

4.凸多边形与凹多边形。

看投影:图形见课本p85.7.3?6.。

5.正多边形。

由正方形的特征出发,得出正多边形的概念.。

各个角都相等,各条边都相等的多边形叫做正多边形.。

二、课堂练习。

课本p86练习1.2.。

三、课堂小结。

引导学生总结本节课的相关概念.。

四、课后作业。

课本p90第1题.。

备用题:

一、.。

1.由四条线段首尾顺次相接组成的图形叫四边形.()。

2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()。

3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()。

4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()。

多边形的内角和教案【第九篇】

各位领导,各位老师:

大家下午好,很高兴有机会参加这次教学研究活动。

我的教学设计是华师大版七年级数学(下)第八章第三节"多边形的内角和与外角和"。根据新的课程标准,我从以下七个方面说一下本节课的教学设想:

从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。

学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。

新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察,操作,推理,想象等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点,难点。

知识与技能掌握多边形内角和与外角和定理,进一步了解转化的数学思想。

过程与方法经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

情感态度与价值观让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

教学难点转化的数学思维方法。

本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。

课堂组织策略利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

学生学习策略明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

辅助策略利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。

整个教学过程分五步完成。

1,创设情景,引入新课。

首先解决四边形内角的问题,通过转化为三角形问题来解决。

2,合作交流,探索新知。

更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。

3,归纳总结,建构体系。

多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。

4,实际应用,提高能力。

"木工师傅可以用边角余料铺地板的原因是什么"这既是对本节所学知识在现实生活中的应用,又是本章第一节的延伸,同时也为下节打下了一个铺垫。

5,分组竞赛,升华情感。

四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。

板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理。

本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。

多边形的内角和教案【第十篇】

教学目标 。

知识技能。

通过探究,归纳出   。

数学思考。

1、 通过测量、类比、推理等数学活动,探索的公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

2、 通过把多边形转化成三角形体会转化思想在几何中的应用,同时。

时让学生体会从特殊到一般的认识问题的方法。

3、 通过探索多边形内角和公式,让学生逐步从实验几何过度到。

论证几何。

解决问题。

通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效的解决问题。

情感态度。

通过对生活中数学问题的探究,进一步提高学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,感受数学活动的重要意义和合作成功的喜悦,提高学生学习的热情。

重点。

难点。

在探索时,如何把多边形转化成三角形。

知识联系。

多边形的对角线和三角形的内角和为本节课的知识做了铺垫,本节课的内容为多边形的外角和做知识上的准备。

知识背景。

对多边形在生活中有所认识。

学习兴趣。

通过探究过程更能激发学生学习的兴趣。

教学工具。

三角板和几何画板。

教学流程设计。

活动流程图。

活动内容和目的。

活动一,教师和学生任意画几个多边形,用量角器测其内角和。

活动四、探索任意公式。

活动六、小结和布置作业 。

通过分组测量,得出这几个。

通过用不同方法分割四边形为三角形,探索四边形的内角和。

通过类比四边形内角和的得出方法,探索其他,发展学生的推理能力。

通过画正八边形体会和应用。

梳理所学知识,达到巩固发展和提高的目的。

教学过程 设计。

问题与情景。

师生行为。

设计意图。

设计情景:什么是正多边形?

正八边形有什么特点?

你会画边长为3cm的正八边形吗?

学生思考并回答问题。

学生不会画八边形,画八边形需要知道它的每一个内角,怎么就能知道八边形的每一个内角,就是今天要解决的问题,以此来激发学生的学习兴趣和求知欲。

活动1、

在练习本画出任意四边形,五边星,六边形,七边形。

通过测量猜想每一个,感受数学的可实验性,感受数学由特殊到一般的研究思想。

活动2(重点)(难点)。

学生在练习本上把一个四边形分割成几个三角形,教师在黑板上画几个四边形,叫几个学生来分割,从而用推理求四边形的内角和,师生共同讨论比较那一种分割方法比较合理有优点。

通过分割及推理,培养学生用推理论证来说明数学结论的能力,同时也培养学生比较和归纳的能力。

通过分割及推理,进一步培养学生的解决问题和推理的能力。

活动4、探索任意。

把活动2和3中的结论写下来,进行对比分析,进一步猜想和推导任意,教师作总结性的结论,并且用动画演示多边形随着边数的增加其内角和的变化过程。

活动5、画一个边长为3cm的八边形。

让学生在练习本上画一个边长为3cm的八边形,教师进行评价和展示。

活动6、小结和布置作业 。

师生共同回顾本节所学过的内容。

相关推荐

热门文档

39 2020975