《长方体和正方体的认识》教案精编5篇
【导言】此例“《长方体和正方体的认识》教案精编5篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
《长方体和正方体的认识》教案1
教材分析
苏教版课程标准教材编写的《长方体和正方体的认识》以学生已有的观察物体的丰富经验为基础,先明确长方体有几个面,从不同的角度观察一个长方体最多能同时看到几个面等知识,自然地由实物图抽象出直观图。在介绍棱和顶点的概念后,引导研究有几条棱、几个顶点,接着研究面和棱的特征。教材力图沟通棱、顶点和面之间的联系,引导学生用看一看、量一量、比一比的方法,在合作交流中探究长方体的特征。
在以往的教学中,我们大多注重用“直观实证”的方式研究长方体的特征,而对面、棱、顶点之间关系的认识更多停留在定义所描述的层次。这也就限制了这一内容对发展学生空间观念的作用。事实上,学生在以往的学习和日常生活的经验中,已经积累了关于长方体和正方体的一些认识。如何在此基础上,系统地、深层次构建对长方体特征的认识是值得研究的问题。学生学习“体”的困难往往在于缺少从面到体过渡的桥梁,从点、线、面到体的认识发展需要充分地在“体”上寻找点、线、面之间的联系,实现认知结构的顺应,这是空间观念建立的关键。
教学片段
师:刚才,同学们动脑筋有条理地数出了长方体有──
生(齐):6个面,12条棱,8个顶点。
师:我们的研究不能满足于“是什么”,还要探究“为什么”。
(学生疑惑地用眼神告诉我:这有什么“为什么”?事实就是这样嘛!)
师:没问题?我先来说一个,长方体有6个面,每个面都是(长方形),长方形有4条边,这些边就是长方体的(棱)。那长方体就应该有6×4=24条棱,可为什么只有12条棱呢?
(学生仔细打量眼前的长方体模型,积极探索着答案。)
生:(跑到黑板前指着直观图)就拿这条棱来说,它既是上面的一条边,又是前面的一条边。所以,在计算时,同一条棱算了两次。其他的棱也是这样。
师:那应该怎样算呢?
生(齐):6×4÷2=12条棱。
师:你现在也能提一些“为什么”的问题吗?
生1:长方体的6个面,每个面上有4个顶点,能算出24个顶点,为什么只有8个顶点?
师:问得好!你有答案吗?
生1:我有答案,但想让其他同学回答。
生2:(指着直观图上的一个顶点)这个顶点既是上面的一个顶点,又是前面的一个顶点,还是右面的一个顶点。也就是说这个顶点计算时被算了3次。其他顶点也一样。所以应该用6×4÷3=8个顶点。
师:真是太好了!刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?
生1:能不能由棱的条数推算出顶点的个数、面的个数?
生2:由顶点的个数是不是也能推算出面的个数和棱的条数?
师:真会提问题!同学们有兴趣研究吗?
(学生兴致勃勃地研究并汇报了两个问题。)
师:观察一下这6道算式,在利用面、棱、顶点之间关系推算时,有什么规律?
生1:都先算出了24。这是为什么?
(学生陷入了沉思,不一会儿,陆续举起手。)
生2:这儿的24表示的是24条边(棱)或者24个顶点。因为长方体是由6个长方形围成的立体图形。这6个长方形一共有24条边、24个顶点。
生3:推算时,就要先算出24条边或24个顶点,再看看与要求的面、棱、顶点之间的数量关系,计算出最后的结果。
师:老师也没想到,同学们通过自己的积极思考,弄清楚了这么多“为什么”。
……
师:同学们通过看一看、量一量、比一比等多种方法发现了长方体面和棱的特征。除此之外,有没有其他方法研究面和棱的特征?
生:通过重叠比较,我们发现长方体相对的面完全相同。两个长方形完全一样,也就是它们的长和宽分别相等。所以,长方体相对的棱长度相等。
师:反过来呢?
生:通过测量,我们发现相对的棱长度相等。而相对面的长和宽分别是两组相对的棱,长和宽分别相等的长方形完全相同。
师:真厉害!看来,研究长方体的特征不仅可以通过操作来发现,更可以运用所学的知识思考来发现。
教学反思
一、数学学习是经验的,也是推理的
新课程注重向学生提供充分的从事数学活动的机会,使学生获得广泛的数学活动经验,这符合学生的认知规律和心理特征。但如今的课堂上不乏学生的观察、操作、猜测、验证等活动,但很少运用数学知识进行简单的推理。有人说,推理是中学的事。其实不然,推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。如果忽视学生推理能力的培养,会在很大程度上阻碍数学思维的发展。所以,重视学生在具体、丰富的活动中经历数学知识的形成过程,获得体验的同时,更要注重学生从已有的数学事实出发,展开合情推理和演绎推理。小学几何常被称为“经验几何”,这并不意味着几何教学无须承担发展推理能力的重任。对于六年级学生来说,已经积累了相当丰富的研究平面图形的知识经验,已经初步认识了立体图形,并且积累了丰富的观察物体的经验,这些知识经验基础使学生探索长方体的特征没有任何障碍。因此,从已有的知识经验出发,更好地发展学生的空间观念理应成为教学的诉求。实践表明:从学生熟悉的面(长方形)的数量和特征出发,联系面围成体的活动经验,对棱的条数、顶点的个数及棱的特征展开验证性推理是非常有价值的。这其中有凭借经验和直觉,通过归纳和类比进行的推测,也有依据已有的某个事实,按照逻辑和运算进行的推理。形式化结果的解释也蕴含着丰富的推理,由面到棱和由棱到面的特征推断让我们看到了证明的雏形。这些都促进了学生数学思维的发展。
二、空间观念是具象的,也是关系的
一般认为,小学阶段几何图形教学承载的`空间观念目标主要是能进行实物和图形间转换。这种空间观念是相对“具象的”。实践表明:要实现实物与图形间的转换,学生的认知结构中必须建立准确的模型。这就要求,对图形的认识不能停留于直观建构,而要适度抽象为头脑中的模型,这种模型的稳固形成依赖于对图形基本元素关系的理性思辨。否则,学生头脑中的模型依然是模糊的,不能随时顺利提取和准确利用。引导六年级的学生有意识地思考长方体的基本元素——面、棱、顶点之间关系,不仅必要而且可行。这种关系的找寻以棱和顶点的概念为出发点,以各自数量之间的关系、面和棱的特征联系为主要研究对象。教师引导学生以长方体的模型和直观图为依托,首先考量面的个数与棱的条数之间的关系,深化了对“两个面相交的线叫做棱”这一概念的认识;接着由面的个数到顶点的个数的推算则从面的角度揭示了顶点的形成;后来又逆向地从棱到顶点、棱到面、顶点到棱、顶点到面等角度全方位、深刻揭示了各元素之间的内在联系:三条棱相交的点叫做顶点,四条棱围成了一个面,一条棱的两个端点就是两个顶点,一个长方形四个角的顶点就长方体的顶点等。教者还引导学生从面的特征推理出棱的特征、从棱的特征推理出面的特征,这也深刻揭示着面和棱之间的密切联系,沟通了面与体的内在联系。这些元素关系的建立极大地明晰了学生认知结构中的长方体模型,为后面学习长(正)方体展开图、长方体的表面积等知识提供了坚实的观念基础。
三、课堂思考是个体的,也是群体的
学生独立思考的能力是在教师的引导和与同伴的思维碰撞中逐渐形成和发展的。课堂中学生要进行独立思考,但个体思维的成果也需要与同伴的交流和碰撞。这其中,教师是促进个体思维深入、群体思维共享的组织者和引导者。当个体思维依靠自身的力量不能打开或难以实现转换时,教师的示范和引导便成为重要的源头。正如学生面对由对面、棱、顶点的“是多少”向“为什么”的思考跃进时,教师示范提出了“为什么”的问题,将思维聚焦于利用关系推算数量,从而搭建起一个对原有信息整理分类、分析关系的思维桥梁。这也激活了学生自主提问和思考的方向,学生的思维随着有价值的问题的提出不断展开,个体思维的丰富成果不断被演化和推广。在由此及彼的类比处,教师适时的点拨:“刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?”再次打开学生的思路,促进自主提问和思考的深入。在研究似乎可以告一段落时,教师画龙点睛式的追问“有什么规律”,再次引发群体思维的风暴。而后,学生群体水到渠成地“证明”棱的特征、面的特征,更展现出思维的无限潜力。这么丰富的思辨成果只有在教师的引导和点拨下通过群体的思维才能不断地展现。
《长方体和正方体的认识》教案2
教学目标
1.掌握长方体和正方体的特征,认识它们之间的关系.
2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念.
3.渗透事物是相互联系,发展变化的辩证唯物主义观点.
教学重点
1.长方体和正方体的特征.
2.立体图形的识图.
教学难点
1.长方体和正方体的特征.
2.立体图形的识图.
教具准备
教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;动画.
学具:长方体和正方体纸盒.
教学设计
一、复习准备.
1、请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;老师明确:这些图形都在一个平面上,叫做平面图形.
2、教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等.
教师提问:这些物体的各部分都在一个面上吗?(不是)
教师明确:这些物体的各部分不在一个面上,它们都是立体图形.
3、引入:今天这节课我们要进一步认识长方体有什么特征.
教师板书:长方体的认识
二、学习新课.
(一)长方体的特征.
1、请同学取出自己准备的长方体.
教师提问:请用手摸一摸长方体是由什么围成的?
请用手摸一摸两个面相交处有什么?
请摸一模三条棱相交处有什么?
教师板书:面、棱、顶点
2、参考讨论提纲来研究长方体的特征.演示动画长方体的特征
讨论提纲:
①长方体有几个面?面的位置和大小有什么关系?
②长方体有多少条棱?棱的位置、长短有什么关系?
③长方体有多少个顶点?
教师板书:长方体:
面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同.
棱:12条,相对的'4条棱长度相等.
顶点:8个.
教师:请完整地说一说长方体的特征.
3、比较立体图形与平面图形的区别.
老师提问:长方体是立体图形,画在纸上如何与平面图形区别呢?
请观察,你能看到几个面?哪几个面?
你能看见几条棱?哪几条棱?
教师介绍长方体的画法:
看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形.
4、出示长方体框架观察.
教师提问:框架上的12条棱可以分几组?怎样分?
相交于一个顶点的三条棱长度相等吗?
教师明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.
(二)正方体特征.
1、演示动画正方体的特征
教师提问:看一看新得到的长方体与原来长方体比较有什么变化?
(长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体)
2、对照长方体的特征学生自己研究正方体的特征.
学生讨论、归纳后,教师板书:正方体:
面:6个完全相同的正方形.
棱:12条棱长度都相等.
顶:8个.
3、学生讨论比较长方体和正方体的特征.
相同点:面、棱、顶点的数量上都相同;
不同点:在面的形状、面积、棱的长度方面不相同.
教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系.
(正方体是特殊的长方体)
教师板书集合图:
三、巩固反馈.
1、量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?
2、根据图中数据口答.
(1)长方体的长是厘米,宽厘米,高厘米, 12条棱长的和是厘米.
(2)这幅图中的几何体是体,12条棱长的和是分米.
(3)如图一个长方体,它的长、宽、高分别是9厘米,3厘米和2。5厘米.它上面的面长是厘米,宽厘米,左边的面长厘米,宽厘米,相交于一个顶点的三条棱长和是厘米.
3、判断.正确的在括号里画,错误的画.
(1)长方体的六个面一定是长方形;
(2)正方体的六个面面积一定相等;
(3)一个长方体(非正方体)最多有四个面面积相等;
(4)相交于一个顶点的三条棱相等的长方体一定是正方体.
四、课堂总结.
谁来说一说长方体和正方体的特征和它们之间的关系?如何看图纸上的立体图?
五、课后作业 .
1、拿一个火柴盒,量一量它的长、宽、高各是多少?然后说一说每个面的长和宽各是多少?
2、说出下图表示的物体是什么形状,并且说明:
它的上面是什么形?长和宽各是多少?
它的右侧面是什么形,长和宽各是多少?
它的前面是什么形?长和宽各是多少?
它的下面和后面是什么形?长和宽各是多少?
六、板书设计
《长方体和正方体的认识》教案3
教学目标:
1.掌握长方体和正方体的特征,认识它们之间的关系。
2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
3.渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重、难点:
1.长方体和正方体的特征。
2.立体图形的识图。
教学过程:
一、复习准备:
1、请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形。老师明确:这些图形都在一个平面上,所有叫做平面图形。
2、教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。
教师提问:这些物体是什么图形?
3、引入:今天这节课我们主要进一步认识长方体和正方体的特征。
教师板书:长方体和正方体的认识
二、学习新课:
(一)长方体的特征。
1、请同学取出自己准备的长方体。
教师提问:请用手摸一摸长方体是由什么围成的?
请用手摸一摸两个面相交处有什么?
请摸一模三条棱相交处有什么?
教师板书:面、棱、顶点
2、参考讨论提纲来研究长方体的特征。
讨论提纲:
①长方体有几个面?面的位置和大小有什么关系?
②长方体有多少条棱?棱的位置、长短有什么关系?
③长方体有多少个顶点?
小组讨论,然后完成p28的表格。
面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。
棱:12条,相对的4条棱长度相等。
顶点:8个。
3、教师:请完整地说一说长方体的特征。
4、出示长方体框架观察。
教师提问:框架上的12条棱可以分几组?怎样分?
相交于一个顶点的三条棱长度相等吗?
教师明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(二)正方体特征。
1、出示正方体的特征。
教师提问:看一看这个长方体与原来长方体比较有什么变化?
(长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体。)
2、对照长方体的特征学生自己研究正方体的特征。
学生讨论、归纳后,教师板书:正方体
面:6个完全相同的正方形。
棱:12条棱长度都相等。
顶:8个。
3、学生讨论比较长方体和正方体的特征。
相同点:面、棱、顶点的数量上都相同;
不同点:在面的'形状、面积、棱的长度方面不相同。
教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。
(正方体是特殊的长方体)
教师板书集合图:
(三)制作长方体。
制作准备:
橡皮泥八小团,细棒十二根(分成三组,每组四根长短相同)
制作过程:
1.按下图的顺序,逐步搭成一个长方体的架子。
2.成品如图。
让学生动手操作,然后说一说在制作的过程中有什么发现。
三、巩固反馈:
1、量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?
2、根据图中数据口答。
(1)(2)
(1)长方体的长是()厘米,宽()厘米,高()厘米,12条棱长的和是()厘米。
(2)这幅图中的几何体是()体,12条棱长的和是()分米。
(3)如图一个长方体,它的长、宽、高
分别是9厘米,3厘米和厘米,它上
面的面长是()厘米,宽()厘米,左
边的面长()厘米,宽()厘米,相交
于一个顶点的三条棱长和是()厘米。
3、判断.正确的在括号里画√,错误的画×。
(1)长方体的六个面一定是长方形。()
(2)正方体的六个面面积一定相等。()
(3)一个长方体(非正方体)最多有四个面面积相等。()
(4)相交于一个顶点的三条棱相等的长方体一定是正方体。()
四、课堂总结:
谁来说一说长方体和正方体的特征和它们之间的关系?
五、课后作业:
1、拿一个火柴盒,量一量它的长、宽、高各是多少?然后说一说每个面的长和宽各是多少?
2、完成p29的“做一做”。
(冀教版)五年级数学教案 长方体和正方体的认识
长方体和正方体的认识
教学内容:
冀教版数学五年级下册第五单元长方体和正方体的认识。
教学目标:
1. 知道长方体、正方体各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。
2. 通过动手操作,知道长方体、正方体的不同的展开图,加深对长方体、正方体特点的认识。
3. 激发学习数学的兴趣,渗透一种转化的思想,及研究方法的学习,体会学科的价值。
教学重难点:
长方体、正方体的特征和长方体、正方体的关系。
教学设备:
幻灯片、一个正方体纸盒、一个长方体纸盒、直尺。
教学过程:
一 谈话引入
出示实物图。让学生找出图中的长方体和正方体物体。(幻灯显示)
师:同学们请看,这些物体你们认识吗?你能从中找出形状是长方体或正方体的实物吗?
生:墨水瓶的形状是长方体……
生汇报,教师进行分类。
说出生活中见到的长方体和正方体物体。
师:生活中你还见过哪些物体的形状是长方体或正方体?
生:牙膏盒的形状是长方体,骰子的形状是正方体的。
生:……
指名发言要更多倾向于差生。
二 自主探究
1.认识面、顶点、棱的特征。
指出面、棱和顶点。
师:生活中这样的物体有很多,拿出你准备的长方体,像老师这样摸一摸你有什么感觉?
生:上面有平平的面,还有边和尖尖的角。
师:这个平平的面我们就叫做长方体的面、面与面之间的边叫做棱,三条棱相交的点叫做顶点。(也可以试着让学生说一说他们的名称)教师板书。
拿出正方体物体:你们能指出面、棱和顶点吗?
再让学生指一指长方体的。
面的特征。
师:数一数长方体有几个面?正方体有几个面?
生:长方体有6个面、正方体有6个面。
师:你是怎么数的?这些面有多少特征?
(让学生按照一定的规律来数)
生:相对的面的面积相等。
师:你用什么办法验证你的猜测呢?(可以在小组内说一说)
生用一定的方法验证相对的面的面积相等。
生:我用算的方法来验证……
生:我用剪的方法验证,是这样做的……
生:我用画的方法……
顶点、棱的特征。
师:观察用细棒和珠子做成的正方体和长方体。
师:长方体和正方体分别用了多少根小棒、多少颗珠子?(珠子也就是长方体和正方体的"顶点",所用的小棒就相当于"棱"。)
生:正方体用了8颗珠子12根小棒,证明正方体有8个顶点,12条棱。
生:……
师:说说你是怎么数的?它们的棱各有什么特点呢?
让学生按照一定的顺序来数。
整理特征。
师:刚才我们通过观察找到了长方体和正方体的特征,你能把它们的特征整理在表格中吗?
名称 面 顶点 棱
正方体 6个面,所有的面完全相等。 8个顶点 12条棱,所有的棱的长度都相等。
长方体 6个面,相对的面完全相等。 8个顶点 12条棱,每组4条棱的长度相等。
学生先自己整理然后在小组内交流。
2. 探究长方体和正方体的关系。
师:仔细观察表格,正方体和长方体有哪些相同的地方?哪些不同的地方呢?
生:正方体和长方体都有……,不同的地方是……
学生汇报得出:正方体是特殊的长方体。
认识长、宽、高。
师:相交于一个顶点有三条棱,这三条棱的长度谁知道叫什么名字呢?你是怎么知道的?
生:……
师:拿出你准备的长方体,这样放着谁能说出它的长、宽、高?如果这样放呢?(变换不同的方向说出)
师:你们能看图说出每个长方体的长宽高分别是多少吗?
师:你能测量长方体的长、宽、高吗?
完成练一练第一题。
师:正方体的棱长有什么特点?那正方体每条棱的长度都叫做正方体的棱长。
练一练第二题。
三 巩固新知
练一练的第三题。
师:看练一练的第三题,谁能把题读一读,然后回答。
生:……
师:前面的面积是多少平方厘米呢?……
生:……
总结
回顾这堂课,你有什么收获?
《长方体和正方体的认识》教案4
教学内容:九年义务教育六年制小学数学第十册
同学情况分析和教学设想:《长方体和正方体的认识》是同学在学习认识长方形、正方形、三角形等平面几何知识的基础上,第一次学习立体几何图形的有关知识,所以教学中重点是让同学亲自体验,联系生活实际,建立空间观念。为后面学习外表积和体积打下基础。本课教学我的设想是通过同学观察日常生活中的长方体、正方体的实物,亲手玩弄实物或图形,运用电脑课件来重点展示图形的面、棱、顶点的特点,使同学对长方体和正方体有一些感性认识,然后通过反馈练习,加深理解。
教学目标:
1、知识技能目标:掌握长方体和正方体的特征,理解长方体和正方体的关系。
2、能力目标:指导启发同学运用观察、丈量等方法,探究长方体和正方体的有关特征,开发同学智能。
3、情感态度目标:通过观察、玩弄实物协助同学建立起空间观念。
教具学具:
教师准备:墨水盒、牙膏盒、魔方、乒乓球等。
同学准备:边长1厘米的小正方体(每组至少8个)、长方体和正方体实物。
教学手段:多媒体辅助教学
教学过程:
一、导入新课
师:请同学们来回忆:我们学过了哪些平面图形?(生答)这些图形都是由什么围成的?(线段)。课前老师曾让同学们把数学书最后两页的组合图形纸板沿虚线内折,然后围起来,你围成了什么形体?举起来让大家看看。(长方体和正方体)长方体和正方体与我们学过的平面图形有什么不同?(它们是由面围成的,有一定的厚度。)
师:像这样由面围成的图形,都占有一定的空间,我们把他们叫做立体图形。比方:(出示实物)墨水盒、魔方、牙膏盒、皮球、灯罩等这些物体的形状都是立体图形。你能不能举出几个形状是长方体或正方体的例子?(同学举例)
那么长方体和正方体都有哪些特征呢?这节课,我们就来认识长方体和正方体。(板书课题)
〖评析:用同学熟悉的'墨水盒、牙膏盒、魔方、乒乓球等实物引入长方体和正方体,充沛说明长方体和正方体是实际世界中客观存在的。为了协助同学更好地认识实际世界,解决日常生活中所遇到的问题,提出本节课的教学目标,这种设计符合儿童认识事物的规律,引起儿童的学习兴趣、激发同学的求知欲,有利于教与学双方一起完成本节课的教学任务。〗
《长方体和正方体的认识》教案5
教学目标
(一)了解并掌握体积单位间的进率。
(二)理解并掌握体积高级单位与低级单位间的化和聚。
(三)培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。
教学重点和难点
(一)体积单位进率和单位之间的互化。
(二)复名数和单名数之间的转化。
教学用具
投影片,电脑动画软件(或活动投影片)。
教学过程设计
(一)复习准备
教师:常用的长度单位有哪些?相邻的两个单元之间的进率是多少?
学生口答后老师板书:长度单位
1米=10分米
1分米=10厘米
厘米
教师:常用的面积单位有哪些?相邻的两个单位间的进率是多少?
学生口答后教师板书:面积单位
1米2=100分米2
1分米2=100厘米2
厘米2
口答填空,并说明算法和算理:
4米=( )分米=( )厘米。(算法:进率×高级单位的数。)
500厘米=( )分米=( )=米。(算法:低级单位的数÷进率。)
教师:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的体积单位间的进率和单位之间的转化。板书课题:体积单位间的进率。
(二)学习新课
1.认识体积单位间的进率。
(1)出示电脑动画图(或抽拉投影片)。
出示棱长1分米的正方体,提问:体积是多少?(1分米3。)
给一条棱涂色,提问:棱长多少厘米?(10厘米。)
1厘米3为单位,一个一个涂,涂满一排,提问:体积是多少?一排一排涂,涂满十排(一层),提问:体积是多少?一层一层涂,涂满十层(即全部涂上)。提问:体积是多少?
(10×10×10=1000(厘米3)。)
教师:由此可知1分米3等于多少厘米3?学生口答后老师板书:
1分米3=1000厘米3
教师:如果把刚才的图理解为棱长1米,即体积为1米3,它的体积是多少分米3?
再请学生看一遍电脑动画图后,学生口答老师板书:1米3=1000分米3。
教师:能说一说相邻的两个体积单位间的进率是多少吗?(1000。)
(2)教师:(指黑板板书)这些是常用的长度单位,面积单位和体积单位及进率,比较它们有什么不同处?(名称、进率两方面。)
2.体积单位的互化。
(1)教师:在日常生活、工作和学习中,经常需要把体积单位进行转化,现在来学习这个问题。
出示例3:(投影) 米3, 米3各是多少分米3?
把问题改写成如下形式:(板书)
8米3=( )分米3
米3=( )分米3
教师:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?如何计算?并说出这样计算的理由。
学生边讨论边试算。然后归纳,老师板书:
因为1米3=1000分米3,8米3有8个1000分米3,列式:1000×8=8000,填8000。
(第2题同上理)1000×=540,填 540。
(2)出示例4:(投影片) 3 400厘米3, 96厘米3各是多少分米3?
改写成算式:3400厘米3=( )分米3
96厘米3=( )分米3
教师:审题时首先要注意什么?试说出这两道小题的解答过程和算理。
学生试算,讨论后,归纳并板书:
因为1000分米3为 1米3,3400分米3中包含有多少个1000分米3,就有几个米3,列式:3 400÷1000=,填 3.4。
(第2题同上理) 96÷1000=填 。
教师:请对比例3,例4,说一说这两道题有什么不同?
学生讨论后归纳,老师再小结并板书:
(例3下面)高级单位→低级单位,用进率×高级单位的数。
(例4下面)低级单位→高级单位,用低级单位的数÷进率。
教师:想一想,体积单位间的转化与我们学过的。长度单位,面积单位的转化有什么相同处与不同处?(换算的方法相同,但进率不同。)
(3)*试解下面几题:
①2米380分米3=( )米3;
教师根据学生讨论情况可作提示:哪部分需要转化?没转化的部分如何办?学生口答后
再板书:2+80÷1000=2+=,填。
②分米3=( )分米3( )厘米3;
教师:哪部分可以直接填?哪部分需要转化?(板书)1000×=340,填5和340。
③米3=( )米3( )分米3。
请学生直接说出列式和结果。
老师:从上面三道题的解答中,你们有什么体会?(复名数与单名数的互化,除了要注意是由高级单位向低级单位转化还是低级单位向高级单位转化外,还要注意审清题中哪一部分需要转化。)
书面练习:(请4位同学写投影片,集体订正)课本P38做一做和补充题。
出示例5:(投影) 一块长方体钢板长米、宽米、厚米。它的体积是多少分米3?
请同学们自己解答。老师巡视中可抽选一名先算出立方米,再化为立方分米,和一名直接算出立方分米的同学去板书。集体订正时由同学自己确定哪种算法较好。
(三)巩固反馈
口答填空,说出计算过程。(投影片)
米3=500厘米3( ) 分米3=2米3 60厘米3( )
(四)课堂总结
1.体积单位的进率。
2.体积单位的转化方法。在学生总结基础上,将例3,例4后归纳的方法汇集成一个,并板书出来:
板书设计