绝对值教案优推4篇
【序言】由阿拉题库最美丽的网友为您整理分享的“绝对值教案优推4篇”教案资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
七年级数学《绝对值》教案【第一篇】
一、教学目标
1.初步理解绝对值的意义,掌握求有理数的绝对值的方法,并会求有理数的绝对值.
2.利用绝对值解决?些简单的实际问题.
3.使学生初步了解数形结合的思想方法.
4.通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,体会绝对值的意义和作用,感受数学在生活中的价值.
二、教法设计
通过实体模型或问题实例创设学生参与情景,在自主看书寻找问题答案后探求绝对值的意义及应用.
三、教学重点和难点
重点:初步理解绝对值的意义,会求一个有理数的绝对值.
难点:对绝对值意义的初步理解.
四、课时安排
1课时
五、师生互动活动设计
自主、探究、合作、交流.
六、教学思路
(一)、导入
1.教师拿出准备好的数轴模型,让学生观察后摆放在讲台前,叫两个学生站在绳上标有点12、点6的位置,让其他学生观察度量后回答:这两个同学与原点的距离各是多少?
另外叫两个学生分别站在绳上标有点一6、点一12的位置,其他学生观察度量后回答:这两个同学与原点的距离各是多少?
(给学生充分的时间思考,相互讨论、探讨.)
或:创设问题情景
挂出画有数轴的磁性黑板,两只小狗分别站在数轴上原点的左、右两侧3个单位的点上,向它离开原点的距离各是多少?(激情引趣,导人新课)
2.概念的引述.
教师引导学生看书自学后,举例说明:什么是一个数的绝对值?如何表示一个数的绝对值?
(叫学生板书)
(学生在自学的基础上,可相互合作、探讨,教师参与学生的讨论,并进行个别指导.)
3.引导学生思考书中“想一想”:互为相反数的两个数的绝对值有什么关系?
(在学生充分思考后,教师要引导学生相互说,并叫5个学生上黑板举例说明这个关系.)
(二)、新知识运用
例1:求下列各数的绝对位:(小黑板示)
0、-、
教师示范一题的解题格式,其余题目由学生独立完成.(培养学生规范化解题的良好习惯)
四、知识拓展
师生互动,先要求学思考、解决,再在组内互相交流.
1.(1)在数轴上表示下列各数:
一1.5、一3、一1、一5.
(2)求出以上各数的绝对值,并比较它们的大小.
(3)你发现了什么?
(培养学生独立思考解决问题的习惯,学会发现问题,总结规律.)
2.如果=,那么
3.
4.字母a表示一个正数,-a表示什么?- a 一定是负数吗?
(字母表示数的意义,为下一章的代数式做准备.)
视学生掌握知识的实际增况开展自编题,编出的题目先在小组内互相交流,再在小组内选出一题在全班交流.
五、小结
1.知识点:
(1)绝对值的定义二
(2)一个数的绝对值与这个数的关系.
2.数学思想方法:数形结合的思想.(培养学生总结能力)
自我评价
本课设计体现的几个教学理念:
1.既注重学生的全面发展、又重视突出重点.在教学过程中不仅考虑使双基、能力和非智力教学目标的切实实现,而且突出了培养思维能力这个重点,着重培养学生思维的。准确性、深刻性、批判性、创新性等优秀品质.
2.突出了归纳思维方法和学生创新意识的培养.这主要是通过求绝对值的法则的学习过程和“知识拓展”中提出的问题而实现的.
3.学生的自主探索和教师的有效而及时的组织、引导与合作相结合.本课设计者根据初一学生的认和水平,既注重安排他们的自主探究活动,又及时地进行引导、讲解和帮助,这一教学理念贯穿本设计始终.
4.注重教学材料的呈现方式,采用磁性黑板的直观作用和多变而有趣的练习,激发学生的学习兴趣和参与教学活动的积极性,增强了教学的情境性.
5.本课设计者电教手段的应用没有得到体现,只适合硬件条件较差的学校或对新技术手段不熟的教师使用.
七年级数学《绝对值》教案【第二篇】
教学目标
1、了解绝对值的概念,会求有理数的绝对值;
2、会利用绝对值比较两个负数的大小;
3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。
教学建议
一、重点、难点分析
绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。
教材上绝对值的定义是从几何角度给出的。,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。
二、知识结构
绝对值的定义;
绝对值的表示方法;
用绝对值比较有理数的大小。
三、教法建议
用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即在教学中,只能突出一种定义,否则容易引起混乱。可以把利用数轴给出的定义作为绝对值的一种直观解释。
此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数。“非负数”的概念视学生的情况,逐步渗透,逐步提出。
四、有关绝对值的一些内容
1。绝对值的代数定义
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
2。绝对值的几何定义
在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。
3。绝对值的主要性质
(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零。
(4)两个相反数的绝对值相等。
五、运用绝对值比较有理数的大小
1、两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。
比较两个负数的方法步骤是:
(1)先分别求出两个负数的绝对值;
(2)比较这两个绝对值的大小;
(3)根据“两个负数,绝对值大的反而小”作出正确的判断。
2、两个正数大小的比较,与小学学习的方法一致,绝对值大的较大。
绝对值教案【第三篇】
教学目标:
知识目标:(1)理解绝对值的概念及表示法。
(2)理解数的绝对值的几何意义。
能力目标:(1)掌握求一个数的绝对值及有关的简单计算,
(2)掌握绝对值等于某一正数的有理数的求法,探索绝对值的简单应用。
情感目标:让学生经历绝对值的产生过程,体会数形结合思想。
教学重点、难点:
重点:绝对值的概念和求一个数的绝对值。
难点:绝对值的几何意义。
教学手段:多媒体(powerpoint)教学与板书相结合。
教学过程:
一、新课引入
我们已经知道有理数在日常生活中应用广泛,与生产实践联系紧密,用正、负数可以来表示相反意义的量,而数轴使我们直观的感受到有理数中正、负数的区别和数在数轴上相应的位置。
乘城市中的出租车去逛商店是我们经常经历的事,其中的数量关系与我们所学的有理数、数轴有密切联系。例如有2位同学在书店购买书籍后回家,一位同学乘上甲出租车向东行驶10Km到达A处,另一位同学乘上乙出租车向西行驶10Km到达B处。
二、合作学习
把全班同学分4—5组分组讨论完成下面的三个问题
1:描述请大家用数轴来表示这一过程(记向东行驶的里程数为正)
2:思考两位同学付费额度是否一样?为什么?
3:结论付费额度与行驶方向有没有关系?
然后请各组代表总结发言:(鼓励学生积极参与,并给予高度的评价)
这两位同学由于乘车离开书店的距离一样,所以付费额度也是一样的,与行驶方向无关。说明在数轴上的A(+10)、B(—10)两点到原点(书店)的距离是一样的,都是10。同样数轴上+5和—5两点到原点的距离也是一样的。
我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。(注意是离开原点的距离)
如数轴上表示-5的点到原点的距离是5,所以—5的绝对值是5,记作;+5的绝对值也是5,记作。其实际意义是:数轴上+5这个点到原点的距离为5。(强调绝对值符号的书写格式)
三、课内练习
1、求下列各数的绝对值:-1。60-10+10同时说出它们的几何意义。
2、说出下列各数的绝对值:-7-2。0501000
由上述两题可概括出:(在教师的引导下让学生得出结论)
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,互为相反的两个数的绝对值相等。(注意一个数的绝对值不可能是负数,而是非负数。)
(一)典例分析
1、求绝对值等于4的数?
注:分析例题时尽量培养学生利用数轴来解决问题的能力。
2、计算:
四、反馈练习
3、举一个生活中的实际例子,说明解决有的问题只需考虑数的绝对值。(如港口的吞吐量;一位学生上学、放学一共所走过的路等)
4、填表:
相反数
绝对值
21
—0。75
5、画一条数轴,在数轴上分别标出绝对值是6,1。2,0的数
6、计算:
五、探究学习
1、某人因工作需要租出租车从A站出发,先向南行驶6Km至B处,后向北行驶10Km至C处,接着又向南行驶7Km至D处,最后又向北行驶2Km至E处。
请通过列式计算回答下列两个问题:
(1)这个人乘车一共行驶了多少千米?
(2)这个人最后的目的地在离出发地的什么方向上,相隔多少千米?
2、写出绝对值小于3的整数,并把它们记在数轴上。
六、小结
一头牛耕耘在一块田地上,忙碌了一整天,表面上它在原地踏步,没有踏出这块土地,但我们说,它付出了艰辛和汗水,因为它所走过的距离之和,有时候我们是无法想象的。这就是今天所学的绝对值的意义所在。所以绝对值是不考虑方向意义时的一种数值表示。
七、布置作业
做作业本中相应的部分。
七年级数学《绝对值》教案【第四篇】
教学目标
1.了解绝对值的概念,会求有理数的绝对值;
2.会利用绝对值比较两个负数的大小;
3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.教学建议
一、重点、难点分析
绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有 。
教材上绝对值的'定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。
二、知识结构
绝对值的定义 绝对值的表示方法 用绝对值比较有理数的大小
三、教法建议
用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的.初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即
在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为绝对值的一种直观解释.
此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.
四、有关绝对值的一些内容
1.绝对值的代数定义
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.
2.绝对值的几何定义
在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值.
3.绝对值的主要性质
(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零.
(4)两个相反数的绝对值相等.
五、运用绝对值比较有理数的大小
1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。
比较两个负数的方法步骤是:
(1)先分别求出两个负数的绝对值;
(2)比较这两个绝对值的大小;
(3)根据“两个负数,绝对值大的反而小”作出正确的判断.