首页 > 学习资料 > 教案大全 >

数学教案-复习圆轴对称图形热选精彩8篇

网友发表时间 2919311

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“数学教案-复习圆轴对称图形热选精彩8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

数学教案-复习圆轴对称图形【第一篇】

同学们,你知道世界上有哪些著名的建筑物吗?老师这里也收集了一些著名建筑物的照片,咱们来欣赏一下,好吗?(播放照片)。

你觉得这些建筑物怎么样?

这些建筑物之所以看起来这样赏心悦目,是因为它们都具有一种对称美。

2、欣赏生活中其他具有对称性的物体。

除了有些建筑具有对称的特点,生活中还有很多物体也是对称的。你能来说一说吗?

是啊,对称的物体的确很多。大家看,边解说:许多动物的外形是对称的。有些艺术品是对称的。飞机的外形也是对称的,如果飞机不对称的话,会怎么样?看来对称不仅能给我们带来美的感受,有时也是必须的。

现在把这些对称的物体画下来,可以得到一些平面图形,(出示图形)这些图形有什么特点呢,让我们一起来研究一下。咱们来比比看,哪个小组的同学最会研究!现在就请轻轻打开1号信封取出图形,开始!(学生活动)。

交流:研究之后,你们发现了什么?

指名4个学生回答一下,学生回答的时候教师指导他举起图形展示,同时将他研究的图形贴到黑板上。

把没有讨论的图形贴上黑板,

那其余的图形是不是也具有这样的特点呢?

是啊,我们发现这些图形都能对折,(板书:对折)(课件演示)。

对折后折痕两边的部分大小一样、形状一样,(课件演示)能够完全重合。(板书;完全重合)。

中间的折痕呢,就像一条轴,这种对折后两边能完全重合的图形就是轴对称图形。(完成板书)。

2、试一试。

下面我们来看一看2号信封里的这些图形(出示信封)哪些是轴对称图形?

请一个小组的同学一起讨论一下。

学生讨论,教师收掉黑板上的六个图形。

交流:

(三角形:这种三角形是轴对称图形。梯形:这种梯形是轴对称图形。

长方形:还有谁和他折得不一样?

长方形除了竖着折两边能完全重合,横着折也可以。(教师演示)。

正方形:正方形也有几种折法可以使两边完全重合。

那有没有不是轴对称图形的呢?你怎么会认为它不是呢?

同学们,我们已经认识了什么是轴对称图形,那你想不想自己动手来制作一个呢?在动手之前,我们先来开个小小讨论会,每个小组讨论这三个问题:

(1)做什么图形?

(2)选什么工具?

(3)怎么分工?

好,开始!

学生讨论。

你们讨论出一个方案了吗?

那就请大家各显神通吧,我们来比一比哪个小组的作品最有创意。

教师巡视,要是他们时间够的话可以请他们多做一个。要是发现做两个的,请他们展示做的好的那个。

交流:你们做的是什么图形?是怎么做的?

1、今天我们认识了什么图形?在我们的生活中到处都可以找到它。

现在就请同学们在纸上的这些图形中找出哪些是轴对称图形。

紫荆花:它为什么不是呢?教师拿教鞭在屏幕上一指,因为它里面的图案对折后两边不能完全重合。

c:为什么是呢?/谁有不同意见。这就说明并不一定要左右对称才行,换个方向对折也可以,一次折不出,就多试几次。

2、画一画。

请同学们看第二张纸,

图上都只画出了每个图形的一半,你能画出它们的另一半,使它成为一个轴对称图形吗?

我们先来画第一个。

请你说说你是怎么画的?还有其他画法吗?

第二种画法更容易。

先观察给出的一半图形,确定另一半图形的各个顶点,再连点成线比较容易。

再来画一下第二个。

请一个学生来展示一下。

你和他一样吗?

好,现在我们来轻松一下,请同学们看这,教师表演剪纸。谁来说说我刚刚剪纸时运用了什么知识?课后请同学们到生活中去寻找一下,看看哪些地方也用到了轴对称图形的知识。

你还能想到轴对称图形在生活中的作用吗?

机动:连一连。

你是怎么判断的?

数学教案-复习圆轴对称图形【第二篇】

对称是义务教育课程标准实验教科书数学(人教版)二年级上册第五单元观察物体第二课时的内容,主要教学轴对称的知识。整节课,设计了五个大的活动。让学生在活动中体验对称、感悟对称、理解对称、并且在欣赏的活动中体验对称美。

第一个活动是让学生动手剪剪,在剪一剪中体验对称图形的特点,对对称、对称图形有一个直观的了解。

第二个活动,设计的是让学生找一找,在各种图形事物中找一找那些是对称图形,那些不是对称图形?在找的同时,感悟到对称图形的特点,同时让学生感受到生活中到处都有对称,到处都有对称的事物。

第三个活动是让学生动手画一画对称轴,进一步理解对称及对称图形的特点,接着,出示正方形、长方形、和五角星,让学生找对称轴,由于可找很多条对称轴,让学生感悟到同一个物体有不同的对称轴,感觉到对称的奥妙.

第四个活动,在学生了解了对称及对称图形后,让学生跟着图片一起欣赏各种对称物体、图形。把生活中的数学知识:对称及对称图形在课堂上进行抽象、概括后,又回到现实生活,让学生用数学的眼光去判断生活中的对称,培养学生用数学的眼光看生活中的数学,同时,进行了美的熏陶。

第五个活动,是对学生学习的课外延伸,让学生设计一个对称图形,打扮我们的教室,充分调动了学生的积极性,发挥了他们的想象力。

数学教案-复习圆轴对称图形【第三篇】

步体会到生活中的对称现象,初步认识轴对称图形的一些基本特征。并初步知道对称轴。

2.使学生能根据对轴对称图形的初步认识,在一组实物图案或简单平面图形中正确识别轴对称图形;能用一些方法“做”出一些简单的轴对称图形。

3.使学生在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,激发对数学学习的积极情感。

多媒体课件、剪刀、彩色笔两支、彩色纸。

3.生活中哪些物体也具有对称的性质,请你写在横线上。

4.剪下书本第115页的天安门城楼图、飞机图和奖杯图,并对折,把你的发现写下来。

5.搜集一些轴对称的图形,打印出来,并能作简单的说明。

6.搜集一些著名建筑的图片,打印出来。

1.今天老师带来了几个物体,我们一起来看看!(出示:天安门、飞机、奖杯)。

问:请同学们仔细观察,这些物体的外形都有什么特点?(对折后两边相同、对称、都是轴对称图形)。

预设1:左右两边相同。像这样两边大小、形状完全相同的物体,我们可以说是对称的。那怎么来验证呢?(对折)。

预设2:轴对称图形(对称)。那你说说你对轴对称图形(对称)的了解?

是不是所有的图形都是对称的?它们又是怎么对称的?我们又怎么来证明?今天这节课,我们就一起来研究一下。

3.你怎么理解轴对称图形?(学生的回答可能很零碎)。

好,那接下来我们就一起来验证一下!

1.课前让大家剪下了这三个图形并对折了,现在能把你的发现和大。

家说一说吗?

生交流。(两边是一样的、左右两边大小一样、对称、有一条线、折横、对称线等)。

(1)两边的大小一样、对称、完全重合。

问:你是怎么折的?比如说这个天安门图(左右对折)飞机图?(上下对折)。

有没有不同的折法?那我可不可以这么折?为什么?(不能完全重合、两边不一样大小)也就是说,轴对称图形对折后两边要——完全重合。

(2)对折后是以前的一半。问:为什么只能看到一半?(两边都重合了)。

(3)它们都是轴对称图形。那你是怎么判断的?都是这么折的吗?有没有不同的折。

法?我这样折可以吗?为什么?

(4)折横、有一条线。若学生说不到,师可这样引导:我们再来看这几个图形,对折后都留下了什么?(一条线——这条线我们叫折痕)那这条折痕所在的直线我们叫——对称轴。对称轴用点划线来表示。画时,先画线,再画点,点和线间隔画。我们可以竖着画,也可以横着画。(黑板上演示)。

那你能尝试找出其中一个图形的对称轴并用彩色水笔画一画吗?开始。

生在对折的纸上找一找并画一画。

反馈。画得正确吗?下面画对的同学请举手!真棒!

下面,老师要看看我们同学有没有掌握了。出示图——汽车图形、钥匙图形、桃子图形、蝴蝶图形、青蛙图形、竖琴图形、香港区徽章图。(想2)。

你能判断出下面哪些是轴对称图形吗?

这个呢?

重点讲解:香港区徽章图。外面完全重合了,里面的图案没有完全重合,所以——不是轴对称图形。

2.教学试一试。

轴对称图形其实对我们来说并不陌生,在我们学过的平面图形中也有一些。

出示:你能判断哪几个图形是轴对称图形吗?

交流反馈:哪些是轴对称图形?为什么?(对折后能完全重合)怎么对折的?(上下、左右)有几种折法?(2种)。

正方形、长方形:怎么对折的?还有别的折法吗?(还能怎么折?)师:不管怎么折,只要对折一次后图形能完全重合的,都是轴对称图形。

正五边形是吗?为什么?

着重提出:平行四边形为什么不是?

生拿出平行四边形折一折,小组讨论后,指名说理由。

问:你的想法是怎样的?谁愿意来折一折?

数学教案-复习圆轴对称图形【第四篇】

教学目标:1、使学生进一步掌握相关图形的特征及运算。

2、使学生的空间观念和想象能力得到培养。

教学重点:公式及计算。

教学难点:技能技巧。

教具准备:小黑板幻灯机。

教学过程()。

一、基本训练:

1、口算:

在听算本上听算《口算卡片》(38)。

(1)统计3分钟以内做完的同学加以表扬,然后指名报答案。

(2)全班统一核对,老师选重点点拨,集体订正。

2、口答:

指名回答上一节课所学知识。解答百分数应用题应该注意什么?

二、进行新课:

1、复习圆的概念。设计如下问题:

(1)圆的圆心是如何确定的?

(2)什么是半径、直径,同一个圆的半径和直径有什么关系?

(3)不同的圆有不同的圆周率吗?

(4)什么是圆的周长?什么是圆的面积?

2、复习圆的周长和面积的计算:

(1)做143页的第11题。

(2)集体讲评,让学生说一说圆周长的.计算公式及面积的计算公式。

(3)教师和学生一起回忆公式推导过程。

(4)在小黑板上出示如下问题:让学生口答。

a、填空:圆周长是其直径的()倍。

大圆的半径是小圆的3倍,大圆的圆周长是小圆的()倍。

b、判断:圆周率等于3。14()。

圆的面积大小只与半径的长短有关。()。

集体讲评。

3、复习轴对称图形。做练习三十五的第二十六题。然后集体讲评。

三、巩固练习:

1、做练习三十五的第23题:

(1)全班座练,指名板演。教师巡视,指导补偿生。

(2)统一讲评,集体订正。重点讲清:图形的特点。

2、做练习三十五的第24题:

(1)全班座练,指名板演。教师巡视,指导补偿生。

(2)统一讲评,集体订正。重点讲清:运用的公式。

四、当堂检测:(当堂效果验收,是课堂作业)。

在a本上做练习三十五的第30题。

五、当天检测:(当天效果验收,是家庭作业)。

在b本上做练习三十九的第28、29题。

教后感:

数学教案-复习圆轴对称图形【第五篇】

教学内容:轴对称图形、对称轴、对称性质;课本第100~101页,完成相应的“做一做”题目和练习二十六的第1~7题。

教学目的:使学生初步认识轴对称图形与对称轴;会找出对称图形的对称轴;并知道对称轴两侧相对的点到对称轴的距离相等。

教具、学具:剪刀、复写纸、白纸。

教学过程:

一、复习。

说一说你是如何用对折的方法找出一个圆的圆心的。

二、新授。

1、导入。

在日常生活中,我们会看到一些物体或图形很特别,把它们像圆一样沿着一条线对折,两边就完全重合;如枫树叶、蝴蝶(出示图形)等这些图有对称美;那么,到底什么样的图形才是轴对称图形,这就是我们今天要学的内容。

教师把一张白纸对折,中间夹上双面复写纸,在纸上面画半个花瓶,然后把纸展开,得到以折痕为对称轴的整个花瓶。

从图中不难发现折痕两侧物体形状与图形的大小完全一样。

师生一起打开课本第121页,看上半页的三个图(树叶、蜻蜓、天平)由学生说一说他们的特点。(他们以树叶的主干、蜻蜓的身躯、天平的指针为轴左右两侧形状、大小一样。)。

做课本上的实验,把一张纸对折并按书中的图样画好,再用剪刀剪下,把纸打开可看到它是以树干这直线为轴,两侧的图形能够完全重合。

小结:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形(指着树叶等)就是轴对称图形。折痕所在的这条直线叫做对称轴。

回答课本第121页下面的“做一做”。

3、画(找对称轴)。

学生画出对称轴。

最后要求学生在课本上量一量对称轴两侧相对的点到对称轴的距离是否相等。通过多处的测量可概括出:在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等。

数学教案-复习圆轴对称图形【第六篇】

1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形的基本特征。

2、会用动手或观察等方法辨别轴对称图形,能利用身边的工具制作轴对称图形,并在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生良好的数学情感。

3、在对知识的探究过程中,培养学生的合作能力,动手能力、空间思维能力和良好的学习情感。

教学重点:

教学难点:

教学过程:

一、活动导入。

谈话:同学们,老师今天带来了一个美丽的朋友,大家看!

(出示只有一个触角的蝴蝶的图片。)。

提问:仔细观察这张图片,你有什么发现和感受,还应该怎么做才好看?

学生回答。

教师:今天我们要研究的问题和这只美丽的蝴蝶也有一定的关系。

板书课题:轴对称图形,同时引导学生看了课题你想研究哪些问题?(请学生提出自己赶兴趣的问题)。

1、课件出示天安门、飞机、奖杯图片。引导学生观察图片上的物体,说说它们有什么共同特征。

(先小组讨论,再汇报)。

引导学生用手摸一摸对折后的两边,说说有什么样的感觉。得出结论:这些图形对折后“两部分完全重合”。

介绍:我们把这些对折后能完全重合的图形称为“轴对称图形”。(板书轴对称图形定义)。中间这条折痕就是轴对称图形的对称轴。(板书:对称轴)。

谈话:我们生活中还有哪些常见物体的平面图形也是轴对称图形呢?

(学生交流并回答)。

2、试一试。

谈话:同学们你们的学具袋中有几种不同的多边形,它们是轴对称图形吗?

汇报时引导学生用“完全重合”等词语来描述和判断是否是轴对称图形。

谈话:下面我们一起到“轴对称图形博物馆”去看看。

小组派代表汇报合作过程中发现的问题和解决的方法以及判断的结果及理由。

4、摆对称的姿势。

谈话:同学们有些累了吧。下面跟老师一起来做个身体对称的游戏吧。指名学生上台摆一个有轴对称性质的姿势。

(注意强调要左右两边的动作幅度要相同,否则就不对称了)。

引导学生小组自主合作,选择钉子板、剪纸、方格纸等工具和材料制作轴对称图形。(展示学生的作品)。

学生画好后,请画得快的学生介绍自己的方法。

教师介绍:为了快速的画出图形的另一半使它成为轴对称图形,可以先找出对称点,在连接对称点就好了。

谈话:生活中有那么多轴对称图形和具有轴对称性质的物体,是因为轴对称图形本身就是一种美。

电脑播放一组世界著名的具有轴对称性质的建筑物。

谈话:类似的建筑在我们的身边也有许多,你们想看吗?。

电脑播放一组合肥市具有轴对称性质的建筑物。

五、小结。

谈话:同学们看你们今天学的那么带劲,谁能说说自己今天有什么收获?你认为谁今天表现的最有进步呢?(学生之间评价推选)。

谈话:现在老师要送他一件小礼物,可是老师还没来得及完工,谁能帮我把它修剪好呢?出示一张边缘不齐的贺卡。请学生说说修剪的办法和依据并修剪。打开贺卡,出示其中具有轴对称性质的的剪纸图案,让学生感受轴对称图形的广泛,轴对称图形的美.

数学教案-复习圆轴对称图形【第七篇】

教学目标:1、使学生进一步掌握相关图形的特征及运算。

2、使学生的空间观念和想象能力得到培养。

教学重点:公式及计算。

教学难点:技能技巧。

教具准备:小黑板    幻灯机。

教学过程()。

一、基本训练:

1、口算:

在听算本上听算《口算卡片》(38 )。

(1)统计3分钟以内做完的同学加以表扬,然后指名报答案。

(2)全班统一核对,老师选重点点拨,集体订正。

2、口答:

指名回答上一节课所学知识。解答百分数应用题应该注意什么?

二、进行新课:

1、复习圆的概念。设计如下问题:

(1)圆的圆心是如何确定的?

(2)什么是半径、直径,同一个圆的半径和直径有什么关系?

(3)不同的圆有不同的圆周率吗?

(4)什么是圆的周长?什么是圆的面积?

2、复习圆的周长和面积的计算:

(1)做143页的第11题。

(2)集体讲评,让学生说一说圆周长的.计算公式及面积的计算公式。

(3)教师和学生一起回忆公式推导过程。

(4)在小黑板上出示如下问题:让学生口答。

a、填空:圆周长是其直径的(           )倍。

大圆的半径是小圆的3倍,大圆的圆周长是小圆的(           )倍。

b、判断:圆周率等于3。14                       (                   )。

圆的面积大小只与半径的长短有关。             (             )。

集体讲评。

3、复习轴对称图形。做练习三十五的第二十六题。然后集体讲评。

三、巩固练习:

1、做练习三十五的第23 题:

(1)全班座练,指名板演。教师巡视,指导补偿生。

(2)统一讲评,集体订正。重点讲清:图形的特点。

2、做练习三十五 的第24 题:

(1)全班座练,指名板演。教师巡视,指导补偿生。

(2)统一讲评,集体订正。重点讲清:运用的公式。

四、当堂检测:(当堂效果验收,是课堂作业)。

在a本上做练习三十五的第30 题。

五、当天检测:(当天效果验收,是家庭作业)。

在b本上做练习三十九 的第28、29 题。

教后感:

数学教案-复习圆轴对称图形【第八篇】

1、通过观察和操作认识轴对称图形和轴对称的含义。

3、使学生在操作中加深对图形的认识,建立空间观念。

教学重点。

教学难点。

认识图形,建立空间观念。

教学过程。

一、铺垫孕伏。

1、口算。

二、探究新知。

1、投影出示。

树叶图、青蜓图、天平图,任意不对称图形。

2、引导学生分组讨论。

(1)这些图形,形状有什么特点?

(2)再找出一些生活中实例图形。

3、通过汇报,在教师指导下,使学生明确到:

树叶图、青蜓图、天平图,图形左右部分一样,并且说明:这些图形给人以美感,如果想象一个图形不对称,使人觉得不舒服。

4、(课件演示:对称图形下载)。

将树叶图对折、青蜓图对折,天平图对折,使学生观察到这些图形,沿着一条直线对折,两侧的图形能够完全重合。

5、同桌同学合作实验。

6、教师明确:这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴。

7、投影出示,做一做和练习二十六1题,引导学生判断。

(1)教师出示投影。

(2)学生讨论、交流。

8、分组实验,组内每人画一种图形。

(1)出示101页上图。

(2)每人在方格纸上画一种图形,并剪下来。

(3)比较,哪些图形是轴对称图形,画出它们的对称轴。

(4)教师指导。

(5)使学生明确:正方形、长方形、等腰三角形、等腰梯形、圆,都是轴对称图形。

(6)启发学生,每一种图形,可以画几条对称轴。

学生分组讨论交流。

汇报:正方形可以画4条对称轴。

长方形可以画2条对称轴。

等腰三角形、等腰梯形各有一条对称轴。

圆有无数条对称轴。

(7)引导学生回忆判断,学过的平面图形,哪些是轮对称图形,哪些图形只有一条对称轴,哪些不止一条,可以出示图形。

三、课堂练习。

2、把一张纸对折后,剪下一个图形,把剪下的图形展开,所得的图形是不是轴对称图形?

引导学生同桌或组内操作。

引导学生在书上填画。

四、课后作业。

运用学过的知识,用纸剪去一个对称图形,可以怎样剪?

相关推荐

热门文档

20 2919311