倒数的认识教案设计(精选4篇)
【路引】由阿拉题库网美丽的网友为您整理分享的“倒数的认识教案设计(精选4篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
《倒数的认识》教学设计【第一篇】
一、教学内容:
九年义务教育六年制第九册第二单元《倒数的认识》
二、教材分析:
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
三、教学目标:
1.理解倒数的意义,掌握求倒数的方法。
2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。
四、教学重点:理解倒数的意义,掌握求倒数的方法。
五、教学难点:熟练写出一个数的倒数。
六、教学过程:
(一)、 谈话
1.交流
师: 我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么关系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存关系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存关系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。
(二)、学习新知
对数游戏
1.学习倒数的意义
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数 。
师:4是3的4/3,
生:3是4的 3/4
师:7是15的7/15;
生:15是7的15/7。
提问;看我们做游戏的结果,你们有没有发现什么?
生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。
生2:两个分数的分子、分母相互调换了位置。
生2:两个分数的乘积是1。
提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:倒数的认识
提问:那么怎样的两个数才是互为倒数呢?指导看书。
思考:(1)什么是倒数?满足什么条件的两个数互为倒数?
(2)你能找出互为倒数的两个数吗。请举例
评析:回答问题
理解“互为”的意义。怎样的两个数互为倒数。
找朋友游戏(课前每位同学发一张数字卡片)
练习
(!)出示卡片 (六位同学举着卡片依次站在黑板前)
7/9 11/4 1/50 8 6/5 99
(2) 规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队
提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?
3教学求一个数倒数的方法
出示例题:找出下列各数的倒数
2/3 7/4 1/5 9 1/7/8 0.4
小组讨论 指名板演
提问:1.你是怎么找出2/3的倒数的?
生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3
生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。
2.你是怎么找出7/4的倒数的?
……
提问: 我们怎样才能很快地找到一个数的倒数?为什么?
4.练习 请剩下的没有找到朋友的同学继续找倒数
5.讨论:1的倒数是谁?0的倒数呢?
生:1的倒数是1
师:能说明一下理由吗?
生1:因为1与1的乘积还是1。
生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。
师:0的倒数呢?
生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。
生2:因为0与任何数相乘都得0,所以0的倒数是任何数。
生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。
生4:0可以写成0/1,0/1的倒数是1/0。
生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。
6.完善求一个数的倒数的方法
三、 巩固练习
(一)填空
1.因为5/3*3/5=1,所以()和()互为();
2.因为15*1/15=1,所以()和()互为 ();
3.4/7与()互为倒数;
4.()的倒数是6/11
5.()的倒数是2
6.1/8的倒数是()
7.1/2/7的倒数是()
8.0.3的倒数是()
(二)判断
1.得数是1的两个数互为 倒数。()
2.互为倒数的两个数乘积一定是1。()
3. 1的倒数是1,所以0的倒数是0 。()
4.分数的倒数都大于1。()
(四)思考
4/5*()=()*8
四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?
五、 布置作业
简评:
一、自主学习中让学生勇于创新
新课程标准 指出:“学生是学习的主人。”“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此,教师在课堂上应相信学生、大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在讨论交流中力图创新,学习创新。本案里例中“你有没有发现什么?”“怎样求一个数的倒数”“1的倒数是几,0的倒数呢?”等处的交流促进了学生对知识的感悟与理解。特别是对“0的倒数呢?”一问的回答,学生各抒几见,有的用推理的方法解释0的倒数是谁;有的用旧知识来解决新问题;也有的用反证法来阐述理由。虽然有对也有错,但用不同的方式或不同的角度来思考问题,无疑体现了学生学习方法上的创新,进而实现知识上的统一。
二、在游戏活动中实现新知的推进
游戏是小学生喜闻乐见的活动方式。游戏可以使学生的注意力更持久,积极性更高。可以让学生在轻松愉快的气氛中学到知识。这节课设计的两个游戏贯穿了新授内容的始终。第一个对数游戏让学生通过听一听,想一想,说一说来感受倒数的特征,即互为倒数的两个数分子与分母调换了位置。为后面学习“求一个数的倒数的方法“打下基础。第二个找朋友游戏,首先,让学生通过找朋友巩固了怎样的两个数互为倒数这一知识点;其次,在剩下的数中选取典型让学生通过讨论想办法找到朋友。并概括出求一个数的倒数的一般方法。这样使学生在不知不觉中接受新知;再次,在剩下的数中继续找朋友,起到了“做一做”的效果;最后,想办法找1和0的朋友,完善找一个数的倒数的方法。本节课上设计的游戏不仅在教学上实现了合理、自然的过度,而且让学生学到了知识,还使学生品尝到游戏带来的快乐。
倒数的认识教学设计【第二篇】
教材分析:
这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。
设计理念:
本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程。在求一个数的倒数时,让学生先学后教,激发学习热情,并培养学生观察、归纳、推理和概括的能力。
教学目标:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
能力目标:
培养学生观察、归纳、猜想、推理和概括的能力。
情感目标:
提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。
教学重点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学难点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学过程:
一、课前谈话突破难点
1、谈话——蕴含“两个”,突破“互为”
师:老师也愿和六(1)班的同学成为朋友,你们愿意吗?(愿意)那老师就是你们的…(朋友),你们是老师的…(朋友)。你们和老师互为朋友。(指板书:互为)
二、导入揭题,引导质疑
师:其实在我们的数学中也有类似的情况。今天这节课就让我们一起来发现数学中的类似问题。揭题——(板书:倒数的认识)
师:看到“倒数”这个数学新名词,你的脑子里产生哪些问题。
预设:什么是倒数?怎样求倒数?……
这节课一起来探究这些问题?
三、创设活动情景,理解概念——“倒数是什么”
师:我们刚刚研究了分数乘法,老师想了解大家掌握的怎么样?请看计算。
1、在分类中理解“是什么”
①5/8×8/5②×4③3/4+1/4
④—3/5⑤13/7×7/13⑥3/2×6/5×5/9
计算后你有什么发现?
师:如果请你将这六个算式分成两类,你准备怎么分?
(学生汇报:乘积是1。)[适当处板书:乘积是1]
归纳总结:分类的标准不同,得到的答案也不同,今天我们就研究这一类的算式。
师:这三个算式有什么共同的特征吗?
预设:乘积是1。
2、举例感悟“怎么做”
师:你还能举出这样的例子吗?
还能举出与这些算式不同的例子吗?还能举出不同的算式吗?
归纳总结:像刚才举的这些例子,他们都有一个共同的特点!(乘积是1)在数学上“乘积是1的两个数互为倒数”。如5/8×8/5=1,我们就可以说5/8和8/5互为倒数,还可以怎么说?如我们表述朋友的关系。
5/8倒数是8/5,8/5倒数是5/8。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
②×4这两个数的关系可以怎么说?请您告诉你的同桌。
(学生活动)
⑤13/7×7/13
3、在思辨中深入理解
师:能说3/4和1/4互为倒数吗?为什么?
师:能说3/2、6/5和5/9互为倒数吗?为什么?
四、运用概念,探究方法——“怎样求倒数”
过渡:大家对倒数理解的很不错,那么我给你一个数你能找出它的倒数吗?
(投影,出示例2)
1、求下面各数的倒数
3/5267/20。610。250
学生尝试。
回报交流。
师:这组数中,你最喜欢求哪些数的倒数?为什么?
预设:
生1:我最喜欢求分数的倒数,因为把分数的分子、分母调换位置,它们的乘积就是1。很容易,所以我喜欢求。
生2:我最喜欢求1的倒数,因为1的倒数可以写成分数,分子、分母调换位置还是,1的倒数就是1。很有趣,所以我喜欢求1的倒数。生:进行计算。
师:这组数中,你最不喜欢哪个数的倒数?
预设:
生1:我最不喜欢求0的倒数,因为0如果写成分数,要是调换分子、分母的位置就是,0不能作分母(0不能作除数)。0好像没有倒数。
生2:再说0乘任何数都等于0,也不等于1呀,0肯定没有倒数。
师:那你是怎样求26的倒数的呢?
你是怎样求一个小数的倒数的呢?
归纳总结:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
2、强调书写格式
师:刚才老师看到有学生是这样写的,可以吗?(3/5=5/3)
归纳总结:互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。
先说说下面每组数的倒数,再看看你能发现什么?
(1)3/4的倒数是()(2)9/7的倒数是()
2/5的倒数是()10/3的倒数是()
4/7的倒数是()6/5的倒数是()
(3)1/3的倒数是()(4)3的倒数是()
1/10的倒数是()9的倒数是(
nbsp;1/13的倒数是()14的倒数是()
由学生说出各数的倒数。
师:请你仔细观察,看能从中发现什么,发现得越多越好。
师:小组间可以先互相说一说。
汇报:
预设:
生1:我从第一组中发现真分数的倒数都是假分数。
生2:我从第二组中发现假分数的倒数是真分数或者假分数。
生3:真分数的倒数都小于1,假分数的倒数大于1。
3、填空:
7×()=15/2×()=()×=×()=1
六年级数学《倒数的认识》优秀教学设计【第三篇】
教学目标:
(1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。
(2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维
(3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。
教学重点:倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。
教学难点:熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。
教学准备:写有数的纸片。
教学过程:
一、导入新课。
请同学们观察下面两组字:杏–呆,吴–吞。
师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。
学生:我们发现这两组字都是由相同的字构成的,都是上下结构。上下两部份交换位置就成了另一个新字。
师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的数,这样的两个数之间有什么联系呢?
学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。
师:这样的两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)
二、新知探究。
(一)小组验证互为倒数的两个数的特点。
师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。
师:你们刚才写的所有算式都有怎样的共同点?
学生:我们写的每组数的分子与分母的位置是调换了的。
师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)
板书:第一组:3/2+2/3=9/6﹢4/6=13/6
6/5+5/6=36/30+25/30=61/30
第二组:3/2-2/3=9/6-4/6=5/6
6/5-5/6=36/30-25/30=11/30
第三组和第四组:3/2×2/3=16/5×5/6=1
师问:互为倒数的两个数相加、相减、相乘有何特点?
学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的差也不相等,互为倒数的两个数相乘的结果都是1。
师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)
指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……
2、试下面数的倒数。
2的倒数是0。2的倒数是0。25的倒数是
让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0。2=1/5,想:0。2=1/5,1/5的倒数是5,所以0。2的倒数是5。0。25=1/4……然后再求它们的倒数)让尽可能多的学生说说它们是怎么互为倒数的。
明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。
(二)课堂练习:求一个数的倒数。
1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。
2、师:完成教材P45“填一填”
5/87/462/(补充)
让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。
3、讨论:0有倒数吗?学生交流。
板书:0和任何数相乘都不能得到1,所以0没有倒数。
4、完成P47课堂活动的对口令。
汇报时让学生说一说谁是谁的倒数。
(小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
5、出示判断:
(1)得数为1的两个数互为倒数。()
(2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()
(3)互为倒数的两个数乘积一定是1。()
(4)因为1/3+2/3=1,所以1/3和2/3互为倒数。( )
(5)a是1/a的倒数,1/a是a的倒数。()
(6)a/b是b/a的倒数,b/a是a/b的倒数。()
6、探索求真分数和假分数的倒数的特点。
学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。
师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。
《倒数的认识》教学设计【第四篇】
教学内容:六年级上册第二单元倒数的认识。
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法。
2、提高学生观察、比较、、概括的能力。
3、感悟“变通”的数学思想。
教学重点:倒数的意义与求法。
教学难点:理解“互为”的意义,明确倒数只是表示两个数间的关系。
教学程序:
一、激趣导入,揭示课题。
师:听到大家用如此洪亮的声音向我问好,我就知道,你们一定非常喜欢上——“数学课”。恩,激动+感动=我有信心上好数学课,你们有信心吗?不过,今天我倒是想先考大家一个语文知识方面的小知识。请看:出示:“杏”“呆”,看到这两个字,你发现了什么?
(生:上下两部分调换了位置,变成了另一个字)
师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!
再出示“吴”,让学生得出“吞”。
师总结:这是语文中的有趣的倒数现象,其实在数学中,也存在着这种奇妙的有趣的现象,今天这节课我们就来研究两个数之间的倒数关系,揭示课题:倒数的认识
二、引导质疑,自主探究。
1、引导质疑。
师:同学们,看到“倒数”这个数学新名词,你想了解关于倒数的哪方面的知识?谁能告诉老师?
生:什么是倒数?
生:倒数是指一个数吗?
生:倒数应该怎样表述?
生:怎样求倒数?
生:倒数是不是一定是分数?
生:倒数有什么用?
生:是不是每个数都有倒数?
2、游戏比赛,理解倒数的意义。
师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好?
好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。
准备好了吗?开始……
师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。
(生读,师有选择的板书在黑板上。)
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个
师:为什么能写这么多呢?你们有什么窍门吗?
生:因为我们所写的这两个数的乘积都是1。将其中一个分数的分子分母颠倒就能写出另一个数。
3、揭示倒数的意义
师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?
生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。
师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本第24页例1,并找出倒数的意义。
师板书:乘积是1的两个数互为倒数
你认为哪个词非常重要?你是如何理解“互为”的?生回答
(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
强调:(1)乘积必须是1。
(2)只能是两个数。
(3)倒数是表示两个数的关系,它不是一个数。
4、小组探究求一个倒数的方法
师:同学们知道了什么是倒数,你能求出一个数的倒数?
请大家打开课本第24页,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。
汇报自学成果。找学生板演。分类探索一个数的倒数的求法:分数、整数、带分数、小数。100、1、0 1、2、3 、、
小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。
三、巩固练习,内化提高。
1、判断题。
2、真分数的倒数、假分数的倒数、分数单位、整数的倒数的特殊现象。
师:出示一组真分数。请大家拿出练习纸,先找出下面每组数的倒数,再看看你能发现什么。
交流发现:
师:第一组数的倒数各是多少,你们有怎样的发现?谁愿意上来展示一下。
(的倒数是,的倒数是,的倒数是,这组分数都是真分数,它们的倒数都是假分数。)
师:是不是所有真分数的倒数都是假分数?
(出示结论:所有真分数的倒数都是假分数)
师:第二组(这组分数都是假分数,它们的倒数都是真分数。)
师:是不是说所有假分数的倒数都是真分数?(不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)
师:你说的就是等于1的假分数。而第二组中的分数都是什么样的假分数?
(都是大于1的假分数。)
所以——(卡片结论:大于1的假分数的倒数都是真分数。)
师:第3组呢?(这组分数的倒数都是整数。)
这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)(出示结论:分数单位的倒数都是整数)
师:第四组呢?(……这组都是整数,整数的倒数都是分子为1的真分数。)
师:是不是所有整数的倒数都是分数单位?
(出示:非零整数的`倒数都是分数单位)
师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。
四、总结反思,发展能力。
师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?
师:你能用“我学会了--”来描述今天学到的知识吗?
生:。.。.。.。
五、学科融合
今天的数学知识在同学们的共同努力下非常圆满地探索结束,在即将下课的一点点时间里,我还想和大家一起分享一点语文小知识,可以吗?
接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上 客。
后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。
在人类的社会发展过程中,有很多的现象有着惊人的相似,只要我们善于观察,做一个有心人,我们也能发现其中有趣的相似现象。语文、数学学科存在着无穷的有趣的奥秘,除此之外的更多学科中也存在着更加神奇而丰富的奥秘,希望同学们不要分主课副科,认真学好每一门学科,好吗?