首页 > 学习资料 > 教案大全 >

有理数的乘法教案【汇集4篇】

网友发表时间 3229699

【阅读指引】阿拉题库网友为您分享整理的“有理数的乘法教案【汇集4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

有理数的乘法教案【第一篇】

三维目标

一、知识与技能

(1)能确定多个因数相乘时,积的符号,并能用法则进行多个因数的乘积运算。

(2)能利用计算器进行有理数的乘法运算。

二、过程与方法

经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力。

三、情感态度与价值观

培养学生主动探索,积极思考的'学习兴趣。

教学重、难点与关键

1.重点:能用法则进行多个因数的乘积运算。

2.难点:积的符号的确定。

3.关键:让学生观察实例,发现规律。

教具准备

投影仪。

四、 教学过程

1.请叙述有理数的乘法法则。

2.计算:(1)│-5│(-2); (2)(-) (3)0(-)。

五、新授

1.多个有理数相乘,可以把它们按顺序依次相乘。

例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;

又如:(+2)[(-78)]=(+2)(-26)=-52.

我们知道计算有理数的乘法,关键是确定积的符号。

观察:下列各式的积是正的还是负的?

(1)234 (2)234(-4)

(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。

易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。

教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。

2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。

七年级数学有理数的乘方教案【第二篇】

小学数学《有理数的乘方》教案

学习目标:

1、理解有理数乘方的意义。

2、掌握有理数乘方运算

3、经历探索有理数乘方的运算,获得解决问题经验。

学习重点:有理数乘方的'意义

学习难点:幂、底数、指数的概念极其表示

教学方法:观察、归纳、练习

教学过程

一、学前准备

1、看下面的故事:从前,有个聪明的乞丐他要到了一块面包。他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!

请你们交流讨论,再算一算,如果把整块面包看成整体1,那第十天他将吃到面包。

2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条。想想看,捏合 次后,就可以拉出32根面条。

二、合作探究

有理数的乘法教案优秀6篇

1) 叫乘方,叫做幂,在式子an中,a叫做 ,n叫做 .

2)式子an表示的意义是

3)从运算上看式子an,可以读作,从结果上看式子an,可以读作。

有理数的乘方教学反思【第三篇】

有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以我们在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则的分类讨论,有理数乘方的易混淆点三个方面来教学。

一、要求学生深刻理解有理数乘方的意义。

即一般地n个相同的因数相乘。在教学中,这一部分主要采用学生自学的方式,我通过学案后的相关问题检测学习的效果。利用学案让学生能自己学会乘方各部分的名称、意义,把学生放在学习的主体地位。我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学。始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上。例如,通过实际计算,让学生自己体会到负数的乘方不全是负数,而需要分不同的情况来讨论。

二、特别注意有理数乘方的符号法则的分类讨论。

有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例题中,设计了两组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想。符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显。

三、讲清有理数乘方中的常见易混淆点。

如 与-2 ; 与- 在意义、读法、结果上的区别。最主要的是弄清底数的不同。同时会把他们转换乘法,观察各自的特点,与其他几个的区别。要学生明确写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来学乘方。

有理数的乘方教案【第四篇】

一、 学什么

1、 知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。

2、 知道底数、指数和幂的概念,会求有理数的正整数指数幂。

二、 怎样学

归纳概念

n个a相乘aaa= ,读作: 。 其中n表示因数的个数。

求 相同因数的积的运算叫作乘方。乘方运算的结果叫幂。

例1:计算

(1)26 (2)73 (3)(3)4 (4)(4)3

例2:(1) ( )5 (2)( )3 (3)( )4

想一想1.(1)10,(1)7,( )4,( )5是正数还是负数?

2.负数的幂的符号如何确定?

思考题:1、(a2)2+(b+3)2=0,求a和b的值。

2、计算 ( 2)20 09 +(2)20xx

3、在右 边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三 学怎样

1.某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这 种细菌由1个可分裂成( )

A 8个 B 16个 C 4个 D 32个

2.一根长1cm的绳子,第一次剪去一半。第 二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( )

A ( )3m B ( )5m C( )6m D( )12 m

3.()3,()4,()5的从小到大的顺序是 。

4.计 算

(1)(3)3 (2)()2 (3)02004 (4 )12004

(5)104 (6)( )5 (7)-( )3 (8) 43

(9)32(3)3+(2)223 (10)-18(3)2

5.已知(a2)2+|b5|=0,求(a)3( b)2.

有理数的乘方(第2课时)

一、学什么

会用科学计数法表示绝对值较大的数。

二、怎样学

定义:一般地,一个大于10的数可以写成 的形式,其中 ,n是正整数,这种记数法称为科学记数法。

例题教学

例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至20xx年12月人们最后一次收到它发回的信号时,它已飞离地球1220000000 0km。用科学记数法表示这个距离。

例2:用科学记数法表示下列各数。

(1)10000000 (2) 57000000 (3) 123000 0000 00

例3.写出下列用科学记数法表示的数的原数。

思考:比较大小

(1) 与

(2)与 0

学怎 样

1.用科学记数法表示314160000得 ( )

B. C. 0 D.

2.稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为( )

吨 B. 吨 08吨 D. 0吨

3.人类的遗传物质是DNA,DNA是很 大的链,最短的22号染色体也长达30000000个核苷酸,3000000 0用科学记数法表示为 ( )

B. 3107 D.

4.第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为 。

5 .比较大小:

108 ; .

6.用科学记数法表示下列各数。

(1)32000 (2) -80000000 000 (3) (4)- 389999900000000

相关推荐

热门文档

20 3229699