《倒数的认识》说课稿(精编4篇)
【路引】由阿拉题库网美丽的网友为您整理分享的“《倒数的认识》说课稿(精编4篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
小学数学《倒数的认识》教案1
教学目标:
1、学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。
2、学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。
3、培养学生的观察能力和概括能力。
教学重点和难点:
1、正确理解倒数的意义及“互为”的含义。
2、正确地求出一个数的倒数。
教学过程设计:
(一)激发兴趣,引出概念
1、投影。哪个同学和老师比赛?谁说得快?
师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)
2、同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。
板书:乘积是1两个数
3、你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?
生:两个数分子、分母颠倒位置就可以了。
师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)
4、举例说明,什么叫互为倒数?
师:3是倒数这句话对吗?为什么?
你们说得对,谁能说出几组倒数?
同桌互相说,每人说两组。(指名说)
问:怎样判断他们说得是否正确?
生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于1,这两个数不是互为倒数。
5、思考:1的倒数是几?为什么?0有倒数吗?为什么?
板书:1的倒数是1。0没有倒数。
(二)求一个数的倒数
同学们已经掌握了倒数的意义,也能正确地判断出两个数是不是互为倒数。那么怎样找出一个数的倒数呢?
1、出示前面的投影,找特点。
观察互为倒数的两个数有什么特点,把观察到的结果同前后同学交流一下。
问:谁来说说你发现了什么?
生:互为倒数的两个数,是分子、分母交换了位置。
师:你们观察得很仔细。根据这一规律,你们试着做一做下面的题。
学生说老师板书:
3、同学们想一想,怎样求一个数的倒数?前后、左右的同学互相说一说。
谁来给同学们汇报一下?(2~3名)
板书:求一个数( )的倒数,只要把这个数的分子、分母调换位置。
问:老师为什么要空出一些地方?
生:0除外。
问:为什么要加上0除外?(板书:0除外。)
问:你们现在知道一上课时,老师为什么说得那么快了吗?奥秘在哪儿?你们已经知道了方法。如果给你一个数,你能很快写出它的倒数吗?比一比看。
4、课堂练习。
写出下面各数的倒数:
35的倒数是怎么想的?
问:2的倒数是几?10的倒数呢?怎样又对又快地写出一个自然数的倒数呢?
5、写出1、5的倒数,怎样做?
(三)课堂总结
我们学习了哪些知识?倒数的意义是什么?怎样判断两个数是不是互为倒数?怎样求一个数的倒数?还有什么问题?
下面我们一起做几道题,检验一个我们这节课的知识是否真正掌握了。
(四)巩固练习
1、投影。
问:怎么填得这么快,你是根据什么填的?
问:①谁能回答?
②你根据什么填的?
③为什么根据倒数的意义填?
看下一组题:
问:怎么填?根据什么?与(2)有什么不同?
师:所以做题时要认真审题,看清符号,千万不能出审题错误。
2、下面哪两个数互为倒数?(课本24页第2题做在书上,用线连接,投影订正。)
3、判断下面各题。对的举“√”,错的举“×”,并说明理由。
投影出示:
(1)乘积是1的两个数互为倒数。 (√)
(2)2。5和0。4互为倒数。 (√)
师:你们是怎么想的?
生:2。5和0。4乘积是1,所以是对的。
(3)因为1的倒数是1,所以0的倒数是0。 (×)
问:错在哪里?
问:错在何处?
问:这道题错在哪了?
生:乘积是1的两个数互为倒数。这道题是3个数的乘积是1,所以错了。
4、游戏。
每个组第一个同学手里有一块小黑板,上面都有6个数字。每人写一个数的倒数,写完后传给你后面的同学。如果后面同学发现前面的题做错了,你可以改,再做下一题再向后传。最后一名同学做完后迅速把小黑板拿到前面来。哪一组又对又快做完,哪一组就是优胜。
评比表扬优胜,找出谁给前面的同学改了错。
(五)作业
课本24页第3,5,6题。
课堂教学设计说明
1、这节课的设计思想首先从如何激发学生的学习兴趣入手。一上课就采取了师生比赛填空的方法,使学生产生疑问:老师为什么说得那么快?有什么窍门?学生的兴趣一下子起来了,他们迫切地想听完这节课,解决他们心中的疑惑。这样,一上课就抓住了学生的心。在课的最后,又用小组比赛的形式设计练习,把课堂气氛推向了高潮。这样既检查了学生知识的掌握情况,又培养了学生的集体荣誉感。
2、这节课还注意充分发挥学生的主体作用。如,新授一开始,就让学生观察每道算式,找出共同点,引出倒数的意义。而后又让学生自己观察互为倒数的两个数的变化规律得出求一个数的倒数的方法。
以上就是差异网为大家整理的4篇《《倒数的认识》说课稿》,希望可以对您的写作有一定的参考作用。
《倒数的认识》说课稿2
1、构建“自主-合作探究”的自主学习模式。
新课程强调教学过程是师生交往、共同发展的互动过程;在教学过程中要注重培养学生的独立性与自主性,引导学生质疑、探究,使学习成为在教师指导下主动的、富有个性的过程。本设计中的教学过程是围绕学生“质疑-自学-讨论-交流”活动展开:问题由学生提出,答案由学生找出,评价由学生判定。
2、“以学定教”重新定位教师与学生角色。
新课程强调:学生是数学学习的主人,教师是学生数学学习活动的指导者、参与者、合作者。本教学设计的整个学习活动,充分体现了这一点,教师在引导学生对未知领域进行质疑基础上,与学生一起自主学习、合作探究。让学生通过自主合作的学习活动,在质疑与释疑中建构着自己的数学知识,发展着自己的数学素。著名教育家苏霍姆林斯基说过:“在人的内心深处都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者。”而在儿童的心理,这种需求更为强烈。在研究“整数”、“整数中的两个特例“1”和“0”、“小数”有没有倒数时,问题不是由教师提出的,而是经过学生深入思考提出来的,这就是学生学习的成果,让学生自己独立思考提问,然后辩论、交流,充分发表自己的看法,这样不仅增添了课堂的活力,而且还让学生经历了探索的过程,解决上学生的困惑,更让学生体会到成功的快乐。
篇5: 对张建霞所上的教研课《倒数的认识》进行的评课
听了张建霞执教的“倒数的认识”一课,收获很多。总的认为这一课设计巧妙、思路清晰,流畅,重点突出,充分体现教师主导、学生主体作用。具体评议如下:
1、对教材内容理解透彻。
教学过程思路清晰、流畅,环节设计重点突出,难点突破到位,教学设计严谨,语言简练。对教材理解全面、深刻。
2、充分体现新理念,让学生充分感知、发现概念。
在教学过程中能提供给学生自我探索、自我思考、自我表现的机会,促使学生能积极主动地参与到探索新知的过程中去。同时教师能做到引导到位,导、放结合,注重培养学生的发现能力。在教学中让学生给自己所列举的数,通过观察去分析特征,引出倒数这个新名词,让学生试着相互说,得出了两种不同的说法,然后让学生自己去推敲,得出倒数的概念,求倒数的方法是由小组讨论,共同探索出整数、小数的倒数,交流汇报,充分体现了学生主体地位。
3、知识的学习以学生自主探究和小组合作讨论为主要形式。
教师充分鼓励学生说出自己的意见,表达自己对概念的认识,从意义到求倒数的方法都是由学生来尝试、探索,效果非常好。对0和1有没有倒数的认识更是充分听取了学生的意见,从多角度进行了分析、验证。
倒数的认识教学反思3
“倒数的认识”是在学生掌握了整数乘法等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。在引入部分,我利用朋友的相互关系及中国文字形象的使学生对倒数有了直观的认识,为了使学生深入了解倒数的意义,我引导学生举了大量分数的例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行了调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的发现,我引导他们很快就总结出了倒数的概念——乘积是1的两个数叫做互为倒数。
在让学生通过研究求各种数的倒数的方法的环节上,避免了学生在学习中只会求分数的倒数的知识的单一,延伸的所学的内容。在最后,面对特殊的0和1这两个数时,“学生们出现了小小的”争执“。有人认为:”0和1有倒数。“有人认为:”0和1没有倒数。“对于学生的”争执“我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数时它本身。并且在说明理由时,学生还认为”0不能做分母,所以0没有倒数“这个理由,拓展了我所提供给学生的知识内容。
小学数学《倒数的认识》教案4
教学内容:p27倒数的认识,练习六全部习题。
教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。
教学要求:使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。
教学过程:
一、用汉字作比喻引入
1、师指出:我国汉字结构优美,有上下、左右结构,如果把杏字上下一颠倒成了什么字?呆把吴字一颠倒呢?(吞)一个数也可以倒过来变为另一个数,比如3/4倒过来呢?(4/3)1/7倒过来呢?(7/1也就是7)这叫做倒数,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
(学生各抒己见)
师生共同确定本节课的目标研究倒数的意义、方法和用处。
二、新知探索:
1、研究倒数的意义
师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。
学生自学后,问:有没有疑问?
师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
2、学生自主举例,推敲方法:
(1)师:下面,请大家各自举例加以说明。
(2)学生先独立思考,再交流。
(a、以真分数为例;如:5/8的倒数是8/5真分数的倒数是假分数。)
(b、以假分数为例;8/5的倒数是5/8假分数的倒数是真分数。)
(c、以带分数为例;带分数的倒数是真分数。)
(d、以小数为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)
(e、以整数为例;整数相当于分母是1的假分数)
学生举例的过程同时将如何寻找倒数的方法也融入其中。
3、讨论0、1的情况:
1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)
4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)
三、反馈巩固:
1、完成练一练。
学生独立完成后,集体订正。重点问:8的倒数是几?
2、练习六5(判断)
3、补充判断:
a、a是自然数,a的倒数是1/a。