2023苏教版六年级数学上册全册教案(优质5篇)
【路引】由阿拉题库网美丽的网友为您整理分享的“2023苏教版六年级数学上册全册教案(优质5篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
苏教版六年级上册数学教案【第一篇】
解决问题的策略
一、教学内容
本单元教学用替换的方法解决实际问题。“替”即替代,“换”则更换,替换能使复杂的问题变得简单。本单元的教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。
二、教材的编写特点和教学建议
第一,选择学生能够接受的素材创设问题情境。我国有经典的、应用替换方法解决的问题,如果用这些题来教学,学生只能被动接受解法,潜在的学习能力得不到开发。这些离开生活实际的题目虽然能引起学生短时间的好奇,却难以维持学习热情,更不会产生学习需要。教材联系生活实际设计需要用替换方法解决的问题,如把果汁倒入大杯与小杯、在公园租用大船和小船、布置展板、储钱罐里的硬币、乒乓球比赛时的单打和双打?利用情境的趣味性,唤起积极性;利用问题的挑战性,调动主动性;利用素材的现实性,激活已有经验,变被动接受为主动探索。教材在“你知道吗”里介绍古代名题,让学生了解我国很早就有替换思想。现代与古代的题目合理配置,使本单元教学更有价值。
第二,着眼于积累思想方法,发展解题策略。替换作为一种思想方法,对学生的发展很有好处。用替换方法解决的实际问题,比大纲教材里教学的应用题稍复杂些,解答那些题目很少应用替换方法。编排本单元,不是为了增多题型、增加学习难度,而是为学生创造替换的机会,提供进行替换的载体。因此,两道例题只指点思路和方向,不出现题目的解法。两次“练一练”都提示可以怎样想,应该做些什么。练习十七的题量不多,控制了难度。尤其是例1里“说说为什么这样替换”“说说解决这个问题的策略”,例2里“你准备怎样来解决这个问题”,都是着眼于体会数学思想,积累数学方法,感受解题策略。
(一)、直观的情境——引发替换。
例1用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。例题画出6个小杯和1个大杯,学生就能在图画里看到,如果把1个大杯换成3个小杯,就相当于果汁倒入了9个小杯;如果把6个小杯换成2个大杯,就相当于果汁倒入了3个大杯。这就是利用“小杯的容量是大杯的1/3”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生“说说为什么这样替换”,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。1
(二)、用多种形式解决问题——突出替换策略。
例2里42人一共乘坐10只船,其中有几只大船、几只小船是要解决的问题。“你准备怎样来解决这个问题”不是要求学生说出解题的思路和步骤,而是鼓励学生选择解决问题的形式,正如“猴子”卡通用画图的方法,“兔子”卡通用列表的方法,丰富思考问题的手段。画图和列表都能用于解决实际问题,在前几册教材里已多次教学,这里只要稍加启发,学生能够想到。
三、教学目标:
1、引导学生在具体的替换和假设的过程中灵活运用学过的画图和列表的策略,体会不同策略在解决问题过程中的不同价值。
2、初步学会用替换(置换)、假设的策略解决实际问题,确定解题思路,并有效地解决问题,进一步发展分析、综合和简单推理能力。
四、教学重点、教学难点:
1、重点:引导学生在具体的替换和假设的过程中灵活运用学过的画图和列表的策略,体会不同策略在解决问题过程中的不同价值。
2、难点:初步学会用替换(置换)、假设的策略解决实际问题,确定解题思路,并有效地解决问题,进一步发展分析、综合和简单推理能力。五、课时安排:共3课时
第一课时用替换的策略解决问题
教学目标:
1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重、难点:
1、教学重点:用“替换”的策略解决问题。
2、教学难点:理解“替换”的意义,知道什么样的数量关系可以替换。教具、学具准备:大、小杯子,清水等。
教学过程
一、出示问题,选择策略
1、以图文结合的方式呈现例1,要求学生边读边看图。
2、引导交流:题中告诉了我们哪些条件?要求什么问题?大杯与小杯容量的关系还可以怎样表示?
3、提问:根据题目给出的条件,求每个小杯和每个大杯的容量,有什么困难?
如果720毫升果汁全部倒入小杯,而且知道正好倒了几个小杯,你会求出每个小杯的容量吗?
4、提出假设:如果把720毫升果汁全部倒入小杯,需要几个小杯呢?全部倒入大杯呢?
二、自主探索,运用策略
1、探索:如果把720毫升果汁全部倒入小杯,需要几个小杯?
结合例题中的示意图提问:
一个大杯可以替换成几个小杯?
(1)把1个大杯替换成3个小杯的依据是什么?
(2)由1个大杯可替换成3个小杯,你想到了什么?
(3)小结:如果把720毫升果汁全部倒入小杯,需要(6+3)个小杯。
2、探索:如果把720毫升果汁全部倒入大杯需要几个大杯?
(1)提出问题后,要求让学生看图思考。
(2)交流中明确:将倒入6个小杯中的果汁倒入大杯中,根据“小杯的容量是大杯的”,3个小杯的果汁正好可以倒满1个大杯,6个小杯的果汁正好可以倒满2个大杯。
(3)小结:如果把720毫升果汁全部倒入大杯,需要(1+2)个大杯。
3、列式解答:
引导:根据上面替换的结果,你能求出小杯和大杯的容量各是多少毫升?学生尝试列式解答,交流计算结果。
4、检验。
引导:求出的结果是否正确?我们可以怎样检验?交流中明确:要看结果是否符合题目中的两个已知条件。学生通过计算进行检验,并完成答句。
三、回顾与反思,提升策略
提问:在刚才解决问题的过程中,经过哪些步骤?你觉得哪些步骤是关键?你能说说解决这个问题的策略吗?
学生交流、汇报。
四、拓展应用,巩固策略。
1、指导完成“练一练”。
(1)出示问题,让学生逢主阅读,并要求尝试画出表示题意的草图。
(2)提问:这个问题与例1有什么相同的地方?有什么不同的地方?你打算用什么策略来解决这个问题?
(3)如果把2个大盒替换成小盒,这时一个就是几个小盒?你还想到些什么?
(4)要求学生根据上述讨论的结果,想办法解决这个问题目。
(5)让学生自主进行检验。
(6)反思小结:解决这个问题的关键是什么?
2、课堂作业:做练习十七第1题。
五、全课总结:通过这节课的学习,你有什么收获和感想?
第二课时用假设的策略解决问题
教学目标:
1、使学生初步学会用“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。 2、使学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重、难点:
1、教学重点:用“假设”的策略解决实际问题
2、教学难点:从不同的角度看问题,提出不同的“假设”
教具、学具准备:课件
教学过程
一、出示问题,讨论策略
1、出示例2,读题。
2、小组讨论:你准备怎样来解决这个问题?用什么策略?
3、你准备怎样假设呢?
二、自主探索,运用策略。
1、出示提问:
(1)如果这10只船都是大船,那么一共可以做多少人?
(2)50人与42人比较,多出了几人?为什么会多出8人呢?
(3)有一只小船被当成大船会多出几人?
(4)一共多出8人,说明有几只小船被当成大船?
2、列式计算:
3、你还可以怎样假设呢?你能根据以上的提问,用你的假设方法解决问题吗?(小组讨论)
2021苏教版六年级数学上册全册最新教案【第二篇】
教材简析:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2、会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3、引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4、借助实物演示,培养学生抽象、概括的思维能力。
教 具:圆柱的体积公式演示教具,多媒体课件
教学过程 :
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
2、创设问题情景。(课件显示)
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。)
二、新课教学:
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
1、探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。C、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)
要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题:
底面积(㎡) 高(m) 圆柱体积(m3)
6 3
8
5 2
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米。它的容积约是多少立方分米?(得数保留整立方分米)
解: d=6dm,h==3dm
S底 =πr2=×32 =×9 =(dm2)
V =S底h =×7 = 答:油桶的容积约是198立方分
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
三、巩固反馈
1、 求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业 本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?
苏教版六年级上册数学教案【第三篇】
可能性
教学内容:苏教版数学六年级上册第八单元---可能性
教学目标:
1.通过学习,使学生联系分数的意义,初步掌握用分数表示具体情境中简单事件发生的可能性的方法,会用分数表示可能性的大小。
2.认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。
3.进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。教学重点:认识客观事件发生的可能性的大小,能用分数表示可能性的大小。教学难点:能用分数准确表示可能性的大小。
教学过程:
一、创设情境,导入新课
1.用“一定”,“可能”,“不可能”说一句话。
(板书:一定、可能、不可能)
2.出示天气预报的情境:
长沙,11月22日,气温8-16摄氏度,降水概率10%。
问:同学们,看了这个天气预报,你明天出门时会不会带雨伞?为什么?(不会,因为降水概率只有10%,说明下雨的可能性比较小)
3.我们以前只知道用语言描述可能性,而这里的降水的可能性却用了10%这样一个具体的数,一个事情发生的可能性我们也可以用一个具体的数来表示,今天我们就来研究用数来表示可能性的大小。(板书课题:可能性)
二、探究与交流
1.同步体验。
(1)师出示袋子里有一个红球和一个黄球。
问:从中任意摸出一个球,摸到红球的可能性是几分之几?你怎么想的?(任意摸一个球,摸到红球的可能性是1/2。)
问:这里的2表示什么意思?1呢?
(2)老师在口袋中再放入一个绿球。
问:现在任意摸一个球,摸到红球的可能性是几分之几?
(任意摸一个球,摸到红球的可能性是1/3。)
师:都是任意摸一个球,摸到红球的可能性怎么会不同呢?这说明可能性的大小和什么有关?(可能性的大小和球的总数有关。)
板书:球的总数
(3)追问:如果要使摸到红球的可能性是1/5,口袋里该怎样放球?
如果要使摸到红球的可能性是1/20,口袋里该怎样放球?1/100呢?
(5)你有什么发现?分子都是1:表示红球个数;分母都是球的总个数;球的总数越多,摸到红球的可能性越小。
2.迁移与提升
教学例2。
(1)课件出示图。
师:在图中你看到了哪几张牌?
(2)师将6张牌反扣在黑板上。(师边说边演示)从中任意摸一张,摸到红桃a的可能性是几分之几?你是怎么想的?(一共有6张牌,红桃a有1张,摸到红桃a的可能性是1/6。)摸到黑桃a的可能性是几分之几?摸到其它牌的可能性呢?你能用一句话来概括一下刚才同学们所说的可能性吗?
(3)师:看了这6张牌,你还能提出关于可能性的数学问题吗?先自己想一想,然后把你的问题在小组里说一说。
(学生四人为小组活动,互相提问。)
师:大家来交流一下你们提出的问题。
你能具体地说一说,为什么任意摸一张,摸到3的可能性是1/3吗?
小结:从这里我们可以说明可能性的大小不仅和物体总数有关,还和某种物体的个数或张数有关。
(4)对比提升:去掉一张黑桃3,还剩五张,你能用分数表示哪些可能性?同桌互相说一说。
师:“任意摸一张,摸到黑桃的可能性是2/5”。你是怎么想的?能把你的想法和大家说一说吗?
师:如果老师说一个分数,你们能说出怎么拿吗?
师:课后同学们继续可以做这样的游戏,一人说分数,一人拿牌,比一比,谁的思维最敏捷。
三、实践和应用
1.练习十八第1题。
2.生活中的数学问题。课本第95页练一练。
追问:如果把转盘上的指针转动80次,在红色区域的次数一定是10次吗?
3.设计中奖规则:课件出示
超市将在元旦进行中大奖活动,购物满100元,可以到转盘上转1次指针,如果你是超市的老板,你会怎样设计中奖规则?学生凭生活经验阐述。
师提问:为什么大家都认为指针停在红色区域是一等奖?
(指针停在红色区域的可能性最小,有利于商家)
4.完成练习十八第六题。
同学们平时在游戏的时候要想最快决定两个人的胜负经常会用什么方法?(石头、剪刀、布)那你样想过没有,这种决定胜负的方式是否公平呢?
小芳和小娟在做这个游戏,他们获胜的可能性各是多少呢?
出示表格。
把表格填写完整。
回答问题。
我们以后在游戏时就可以用今天所学的知识来判断是不是公平。
四、全课总结,感受价值。
1.提问:今天大家学得开心吗?你有什么收获?
2.联系生活实际,体现用分数表示可能性的价值
师:在我们的生活中有很多时候都能用到用分数表示可能性的大小。比如:两个厂生产同一种产品,价格等其他条件都一样,甲厂的产品有百分之十返修,乙厂生产的产品有百分之一返修,你选择买哪个厂的?
师:生活中不确定得现象太多了,所以我们应该学会用变化的眼光看这个世界,学会根据可能性的大小去进行选择和判断。
最新苏教版六年级上册数学全册教案例文【第四篇】
教学内容:
教材2-4页例题及“做一做”的内容。
教学目标:
1、知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数。
教具学具:
温度计、练习纸。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
3、谈话:老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
看教材:首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。
了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个 4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
②北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。
3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?
3、我们再来看x疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+米或米。吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:以海平面为界线,+米或米这样的数可以表示海平。
面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+也可以写成米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、 4、+等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是
3、讨论生活中的正数和负数
(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
七、布置作业
《家庭作业》第1页的练习。
最新苏教版六年级上册数学全册教案例文【第五篇】
教学内容:学习课本第一页的例1、完成“试一试”和“练一练”,练习一的第1至3题。
教学目标:
1、在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
教学重、难点:
理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
教学准备:
教学光盘及多媒体设备
教学过程:
一、复习导入
1、谈话:同学们,上学期我们已经初步学习了有关百分数的一些知识,知道百分数是表示一个数是另一个数的百分之几的数,还学习了解决求一个数是另一个数的百分之几的实际问题。你会解决下面的实际问题吗?
(出示下列题目,请学生解答。)
东山村去年原计划造林16公顷,实际造林24公顷。实际造林是原计划的百分之几?
五(1)班有男生25人,女生20人,女生人数是男生的百分之几?男生人数是女生的百分之几?
2、学生独立列式计算后进行交流,重点说说数量关系。
3、揭示课题:今天这节课我们继续学习有关百分数的知识。
二、教学例1
1、出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。
学生画好后,讨论:画几条线段表示这两个数量比较合适?表示哪个数量的线段应该画长一些?大约长多少?你是怎样想的?
提出要求:根据这两个已知条件,你能求出哪些问题?
引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。
在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?
2、引导思考:
这个问题是把哪两个数量进行比较?比较时以哪个数量作为单位“1”?要求实际造林比原计划多百分之几,就是求哪个数量是哪个数量的百分之几?
小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。
启发:根据上面的讨论,你打算怎样列式解答这个问题?
学生列式计算后,进一步追问:实际造林比原计划多的公顷数是怎样计算的?要求4公顷相当于16公顷的百分之几,又是怎样算的?综合算式应该怎样列?
3、进一步引导:此前,曾有人提出“根据两个已知条件,可以求出实际造林面积相当于计划的百分之几”,你会列式解答这个问题吗?
学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?
联系学生的讨论明确:从125%中去掉与单位“1”相同的部分,就是实际造林比原计划多的百分数。
提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?
学生列式后追问:“125%—100%”这个算式中,125%表示什么意思?100%呢?
三、教学“试一试”
1、出示问题:原计划造林比实际少百分之几?
启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?
学生作出猜想后,暂不作评价。
提问:这个问题又是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求“原计划造林比实际少百分之几”,就是求哪个数量是哪个数量的百分之几?你打算怎样列式解答?还能列出不同的算式吗?
2、学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?
小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。
四、指导完成“练一练”
1、要求学生自由读题。
2、提问:你是怎样理解“2005年在读研究生的人数比2004年增加了百分之几”这个问题的?
学生讨论后,要求他们各自列式解答。
3、根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?
学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。
五、巩固练习
1、指导完成练习一第1~3题
做练习一第1题。
可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。
做练习一第2题。
先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。
做练习一第3题。
先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。
2、对比练习
(1)建造一个游泳池,计划投资100万元,实际投资80万元。实际投资比计划节约了百分之几?
(2)建造一个游泳池,计划投资100万元,实际投资比计划节约20万元。节约了百分之几?
(3)建造一个游泳池,实际投资100万元,比计划投资节约20万元。节约了百分之几?
学生读题后先独立思考并列式计算,然后指名分析每题的解题思路。同桌间互相查看解答情况。
3、拓展题。
(1)爸爸买的股票“中国石化”上周五收盘价是20元,本周五收盘价是24元。“中国石化”本周上涨了百分之几?(用两种方法解答)
(2)从南京开往淮安,甲车行了3小时到达,乙车行了4小时到达。甲车速度比乙车快百分之几?
六、全课小结
通过本节课的学习,你学会了什么?求一个数比另一个数多(少)百分之几时,通常可以怎样思考?计算过程中还要注意些什么?今天你在课堂上的表现如何?你的同桌呢?
七、布置作业
1、课内作业:补充习题第1页。
求一个数比另一个数多(少)百分之几的实际问题
例题1 (线段图略)
解法一:先算实际造林比原计划多多少公顷 解法二:先算实际造林相当于原计划的百分之几
20-16=4(公顷) 20÷16==125%
4÷16==25% 125%-100%=25%