七年级数学教学课件【精选4篇】
【导言】此例“七年级数学教学课件【精选4篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
七年级数学教学课件【第一篇】
教学目标:
通过对具体实例的学习,使学生能够了解生活中的不等量关系,理解不等式的概念,知道什么是不等式的解,为以后学习不等式的解法奠定基础。知识与能力:
1.通过对具体事例的分析和探索,得到生活中不等量的关系。
2.通过理解得到不等式的概念,从而使学生经历实际问题中数量的分析、抽象过程,体会现实中有各种各样错综复杂的数量关系。
3.了解不等式的意义,知道不等式是用来刻画生活中的数量关系的。4.知道什么是-山草香§ 不等式的解。
过程与方法:
1.引导学生分析具体事例,从对具体事例的分析中得到不等量关系。
2.引导并帮助学生列出不等式,分析不等式的成立条件。
3.通过分析、抽象得到不等式的概念和不等式的解的概念。
4.通过习题巩固和加深对概念的理解。情感、态度与价值观:
1.通过学生的分析和抽象过程使他们体会现实中错综复杂的数量关系,然后从而培养其抽象思维能力。2.通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团体协作精神,使学生获得合作交流的学习方式。
3.通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育。
4.通过创设问题串,让学生仔细观察、对比、归纳、整理,尝试对有理数进行分类,然后体验教学活动充满着探索性和创造性。教学重、难点及教学突破
重点:不等式的概念和不等式的解的概念。难点:对文字表述的数量关系能列出不等式。教学突破:由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在学生分析问题的时候注意引入现实中大量存在的数量间的不等关系,研究它们的变化规律,使学生知道用不等式解决实际问题的方便之处。在本节的教学中能够在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别。在处理本节难点时指导学生练习有理数和代数式的知识,准确“译出”不等式。教学过程:
一。研究问题:
世纪公园的票价是:每人5元,一次购票满30张可少收1元。某班有27名少先队员去世公园进行活动。当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票。但有的同学不明白。明明只有27个人,买30张票,岂不浪费吗?
那么,究竟李敏的提议对不对呢?是不是真的浪费呢
二。新课探究:
分析上面的问题:设有x人要进世纪公园,①若x≥30,应该如何买票?②若x
结论:至少要有多少人进公园时,买30张票才合算?
概括:
1、不等式的定义:表示不等关系的式子,叫做不等式。不等式用符号>,
2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解。3、不等式的分类:⑴恒不等式:-71+4,a+2>a+1.
⑵条件不等式:x+3>6,a+2>3,y-3>-5.三、基础训练。例
1、用不等式表示:⑴a是正数;⑵b不是负数;⑶c是非负数;⑷x的平方是非负数;⑸x的一半小于-1;⑹y与4的和不小于3.注:⑴不等式表示代数式之间的不相等关系,与方程表示相等关系相对应;
⑵研究不等关系列不等式的重点是抓关键词,弄清不等关系。例
2、用不等式表示:⑴a与1的和是正数;⑵x的2倍与y的3倍的差是非负数;⑶x的2倍与1的和大于—1;⑷a的一半与4的差的绝对值不小于a.
例
3、当x=2时,不等式x-1
注:⑴检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立。⑵代入法是检验不等式的解的重要方法。学生练习:课本p42练习
1、2、3.四、能力拓展
学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票。⑴请问他们购买团体票是否比不打折而按45人购票便宜;
⑵若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜。解:⑴按实际45人购票需付钱_________ 元,然后如果按50人购买团体票则需付钱50×12×80%=480元,所以购买团体票便宜。⑵设有x人到电影院观看电影,当x_____时,按实际人数买票______张,需付款_______元,而按团体票购票需付款________元,如果买团体票合算,那么应有不等式________________,由①得,当x=45时,上式成立,让我们再取一些数据试一试,将结果填入下表:
x12x比较480与12x的大小48
由上表可见,至少要__________人时进电影院,购团体票才合算。五、小结:
⑴不等式的定义,不等式的解。⑵对实际问题中探索得到的不等式的解,然后不仅要满足数学式子,而且要注意实际意义。六、作业课本p42习题第1、2、3题。补充题:
1.用不等式表示:
(1)与1的和是正数;(2)的与的的差是非负数;
(3)的2倍与1的和大于3;(4)的一半与4的差的绝对值不小于。(5)的2倍减去1不小于与3的和;(6)与的平方和是非负数;
(7)的2倍加上3的和大于-2且小于4;(8)减去5的差的绝对值不大于
2.小李和小张决定把省下的零用钱存起来。这个月小李存了168元,然后小张存了85元。下个月开始小李每月存16元,小张每月存25元。问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解)
3.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往a县10辆,调往b县8辆,已知从甲仓库调运一辆农用车到a县和b县的运费分别为40元和80元,然后从乙仓库调运一辆农用车到a县和b县的运费分别为30元和50元,(1)设从乙仓库调往a县农用车辆,用含的代数式表示总运费w元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案。
七年级数学教学课件【第二篇】
“平方根”是数学运算中的初级概念,下面就是小编为您收集整理的七年级数学平方根课件的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!
七年级数学平方根课件
教学目标:
知识与技能目标:
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根
过程与方法目标:
1.通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。
2.通过拼大正方形的活动,体验解决问题的方法的多样性,发展形象思维。
情感与态度目标:
1.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。
2.通过探究活动培养动手能力和锻炼克服困难的意志,建立自信心,提高学习热情。
教学重点:算术平方根的概念。
教学难点:根据算术平方根的概念正确求出非负数的算术平方根。
教学过程:
一、创设情境 导入新课
同学们,2003年10月15日,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,宇宙飞船离开地球进人正常轨道,它运行的速度在什么范围吗?这时它的速度要大于第一宇宙速度(米/秒)而小于第二宇宙速度:(米/秒).、的大小满足。其中,g是物理中的一个常量、r是地球的半径。怎样求、呢?即使给出g、r的对应值,利用我们已学过的知识,也很难求出。这就要用到平方根的概念,也就是本章的主要学习内容.
这节课我们先学习有关算术平方根的概念.
[设计意图]使学生感受到“神五”的成功发射这一伟大壮举,竟然与我们将要学习的本章知识有着密切的联系,激发起学生的好奇心和学习兴趣,感受到学习算术平方根的必要性。
请看下面的问题.
多媒体展示教科书第160页的问题
问题一:
学校要举行美术作品比赛,小欧很高兴。他想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?
很容易算出画布的边长等于5dm。
说说,你是怎样算出来的?
如果这块正方形画布的面积为单位1,那么它的边长是多少?如果面积分别为
9、16、36、呢?
(边问边展示幻灯片)
上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是已知一个正数,求这个正数平方的问题.
[设计意图]通过幻灯片的演示,直观的把实际问题,抽象为数学问题,为学习算术平方根提供背景和素材,进而引入算术平方根的概念。
二、自主探究 合作交流
出示自学提纲:
阅读课本p160-161页,并回答下列问题
1、算术平方根以及有关概念
2、为什么规定:0的算术平方根为0。
3、自学例1,先试做后对照。
4、表示的意义是什么?它的值 是多少?用等式怎样表示?
5、144的算术平方根是多少?怎样用符号表示?
学生活动:独立思考
1、2、3、4、5、(4分钟)
小组交流
1、答案
2、提出疑难问题
注意:每个小组作好纪录(4分钟)
全班展开交流 提出疑难问题
人教版七年级数学课件【第三篇】
教学目标
1.了解的意义,会求有理数的;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力。
3.初步认识对立统一的规律。
教学建议
一、重点、难点分析
本节的重点是了解的意义,理解的代数定义与几何定义的一致性。难点是多重符号的化简。“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
的定义的性质及其判定的应用
三、教法建议
这节课教学的主要内容是互为的概念。
由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、的相关知识
1.的意义
(1)只有符号不同的两个数叫做互为,如-1999与1999互为。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。
(3)0的是0。也只有0的是它的本身。
(4)是表示两个数的相互关系,不能单独存在。
2.的表示
在一个数的前面添上“-”号就成为原数的。若表示一个有理数,则的表示为-。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。
3.的特性
若互为,则,反之若,则互为。
4.多重符号化简
(1)的意义是简化多重符号的依据。如是-1的,而-1的为+1,所以。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
(一)
一、素质教育目标
(一)知识教学点
1.了解:互为的几何意义。
2.掌握:给出一个数能求出它的。
(二)能力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题。
2.培养学生自己归纳总结规律的能力。
(三)德育渗透点
1.通过解释的几何意义,进一步渗透数形结合的思想。
2.通过求一个数的,使学生进一步认识对应、统一规律。
(四)美育渗透点
1.通过求一个数的知道任何一个数都有它的,学生会进一步领略到数的完整美。
2.通过简化一个数的符号,使学生进一步体会数学的简洁美。
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡#课件# 导语的设置,充分发挥学生的主体地位。
2.学生学法:感性认识→理性认识→练习反馈→总结。
三、重点、难点、疑点及解决办法
1.重点:求已知数的。
2.难点:根据的意义化简符号。
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片。
六、师生互动活动设计
学生演示,教师点拨,师生共同得出的概念,教师出示投影,学生以多种形式练习反馈。
七、教学步骤
(一)探索新知,导入新课
1.互为的概念的引出
演示活动:要一个学生向前走5步,向后走5步。
提出问题“如果向前为正,向前走5步,向后走5步各记作什么?
学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步。
[板书]
+5,-5
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为。
[板书]
教法说明由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为。
师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为(一个学生板演,其他学生自练)
师:这样的两个数即互为,你能试述具备什么特点的两数是互为?(学生讨论后举手回答)
[板书]只有符号不同的两个数,其中一个叫另一个的。
教法说明在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为的两数,这时不急于总结互为的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点。更形象直观地引导学生自己得出的概念。
2.理解概念
(出示投影1)
判断:(1)-5是5的()
(2)5是-5的()
(3)与互为()
(4)-5是()
学生活动:学生讨论。
教法说明对概念的理解不是单纯地强调,根据学生判断的结果加深对“互为”的理解,提高学生全面分析问题的能力。
师:0的是0.
(出示投影2)
1.在前面画的数轴上任意标出4个数,并标出它们的。
2.分别说出9,-7,0,-的。
3.指出-,-,1各是什么数的?
4.的是什么?
学生活动:1题同桌互相订正,2、3题抢答。
教法说明1题注意培养学生运用数形结合的方法理解的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为。2、3、4题是对的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为”这一概念,又得出一个非常代数性的结论“的是。”
[板书]a的是-a.
师:的是,可表示任意数—正数、负数、0,求任意一个数的就可以在这个数前加一个“-”号。
提出问题:若把分别换成+5,-7,0时,这些数的怎样表示?
提出问题:前面加“-”号表示的,-(+)表示什么?-(-7)呢,-(-)呢?它们的结果应是多少?
学生活动:讨论、分析、回答。
教法说明利用的概念化简符号是这节课的难点。这一环节,紧紧抓住学生的心理及时提问:“既然的是,那么+5,7,0的怎样表示呢?”学生的思维由一般再引到特殊能答出-(+巩固练习
(出示投影3)
1.是______________的,
2.是_____________的,
3.是_____________的,
4.是_____________的,
学生活动:思考后口答。
学生回答后教师引导:在一个数前面加上“-”号表示求这个数的,如果在这些数前面加上“+”号呢?
[板书]
如:
学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略。并答出以上式子的结果。
教法说明根据以上题目学生对一数前面加“-”号表示这数的和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结。
巩固练习:
1.例题2简化-(+3)-(-4)的符号。
2.简化下列各数的符号
3.自己编题
学生活动:1、2题抢答,3题分组训练。1、2题一定要让学生说明每个式子表示的含义,有助于对概念的理解。3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度。
(三)归纳小结
师:我们这节课学习了,归纳如下:
1.________________的两个数,我们说其中一个是另一个的。
2.表示求的_____________,表示______________.
学生活动:空中内容由学生填出。
教法说明通过问题形式归纳出本节的重点。
(四)回顾反馈
1.-是__________的,
____________的是
2.下列几对数中互为的一对为().
A.和B.与C.与
的是________________;的是___________;的是________________.
4.若,则;若,则。
5.若是负数,则是___________数;若是负数,则是___________数。
学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答。
教法说明
1,2题是对本节课的重点知识进行复习。3、4、5题是从不同角度考查学生对概念的理解情况,对学有余力的同学是一个提高。
初中七年级数学课件【第四篇】
教学目标
1.理解有理数加法的实际意义;
2.会作简单的加法计算;
3.感受到原来用减法算的问题现在也可以用加法算。
对话探索设计
〖探索1〗
(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?
(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?
(3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥,两天一共运进多少吨?
(4)把第(3)题的算式列为300+(-200),有道理吗?
(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?
〖探索2〗
如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?
假设原点为运动起点,用下面的数轴检验你的答案。
在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若某场比赛红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球?
〖小游戏〗
(请一位同学到黑板前)前进5步,又前进-3步,那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?
〖练习〗
1.登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?
2.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?
〖补充作业〗
1.分别用加法和减法的算式表示下面每小题的结果(能求出得数):
(1)温度由下降;(2)仓库原有化肥200t,又运进-120t;
(3)标准重量是,超过标准重量;(4)第一天盈利-300元,第二天盈利100元。
2.借助数轴用加法计算:
(1)前进,又前进,那么两次运动后总的结果是什么?
(2)上午8时的气温是,下午5时的气温比上午8时下降,下午5时的气温是多少?
3.某潜水员先潜入水下,他的位置记为。然后又上升,这时他处在什么位置?