首页 > 学习资料 > 教案大全 >

圆的面积教案(精编3篇)

网友发表时间 455482

【路引】由阿拉题库网美丽的网友为您整理分享的“圆的面积教案(精编3篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

《圆的面积》教学设计1

教学内容:

圆的面积。

教学目标:

1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。

3. 渗透转化的数学思想和极限思想。

教学重点:

正确计算圆的面积。

教学难点:

圆面积公式的推导。

学情分析:

本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。

学法指导:

教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。

教具准备:

多媒体课件,圆片。

学具准备:

把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。

教学设计:

一、复习旧知,导入新课

1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)

2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

3.件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

二、动手操作,探索新知

1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)

(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)

(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?

2. 推导圆面积的计算公式。

(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

(2)学生小组讨论。

看拼成的长方形与圆有什么联系?

学生汇报讨论结果。

(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

生边答师边演示课件。

生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径

S=πr × r S=πr2 师小结公式

S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

(5)读公式并理解记忆。

(6)要求圆的面积必须知道什么?(半径)

3. 利用公式计算。

(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

(2)出示例3,学生尝试练习,反馈评价。

提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

(3)完成第95页做一做的第1题。

(4)看书质疑。

三、运用新知,解决问题

1. 求下面各圆的面积,只列式不计算。(CAI课件出示)

2. 测量一个圆形实物的直径,计算它的周长及面积。

3. 课件演示

用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的面积即圆面积是多少?)

四、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

五、布置作业

1. 第97页的第3题和第4题。

2. 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物、直径(厘米)、半径(厘米)、面积(平方厘米)

板书设计:

圆的面积

长方形的面积= 长× 宽

圆的面积=周长的一半×半径

S=πr×r

S=πr2

以上就是差异网为大家带来的3篇《圆的面积教案》,希望对您的写作有所帮助,更多范文样本、模板格式尽在差异网。

《圆的面积》教学设计2

教学目标:

1、用转化的思想使学生能够理解并掌握圆的面积计算公式,学会利用圆的面积计算公式解答简单的实际问题。

2、通过圆的面积计算公式的推导及应用,培养学生知识迁移能力,观察发现能力,分析概括能力和解决实际问题能力。

3、通过本节课的学习,渗透转化数学思想,让学生体会到数学知识之间的内在联系,感受学数学的快乐。

教学重难点:理解圆的面积计算公式的推导过程及应用。

教学思路:直观引入,演示发现,学会应用。

教学过程:

一、激发兴趣,引出概念

1、回忆圆的周长概念及计算公式,引出圆的面积概念。

2、回忆学过平面图形的面积公式,例举某图形面积计算公式的推导过程。渗透转化数学思想,引出学生对圆面积计算公式推导的探究兴趣。

二、点题提出目标

1、圆的面积计算公式的推导。

(1)课件演示将圆平均分成若干份后,拼接成近似长方形的全过程。让学生不仅懂得圆平均分的份数越多,拼接成的图形越接近长方形;还了解到圆转化成近似长方形后形状发生了变化,但面积没有变化。

(2)学生分组尝试(或教师教具演示等)将圆转化长方形的全过程。让学生进一步感受转化的数学思想,并在操作(或观察)发现拼接成的近似长方形的长相当于圆的哪一部分;宽相当于圆的哪一部分。

(3)由长方形面积公式推导出圆的面积计算公式。

(4)小结:在一个圆里,圆的面积与半径有关系,知道了圆的半径就可以求出圆的面积。

2、教学例1题。

(1)出示例题,学生根据圆面积计算公式独立解决,集体评议。

(2)尝试练习,做一做第1题,练习二十四第3题等。

《圆的面积》教学设计3

教学目标:

1、引导学生推导出圆面积的计算公式,能运用公式灵活的计算,已知圆的半径、直径,求圆的面积。

2、在圆面积公式的推导过程中,通过猜测、观察、对比、发现、尝试等数学方法,探索圆面积的计算公式,培养学生迁移、分析、合作和创新的能力,发展学生的空间观念。

3、使学生感受圆的面积的奥秘,培养学生学习数学的兴趣,并将所学知识运用于生活实际。

教学过程:

一 、创设情境,导入新课。

课件演示:在草地的一个木桩上拴着一只羊,想一想这只羊能吃到草的最大范围在哪里?

师:现在你想提什么数学问题?——揭示课题:圆的面积

二、探索合作,推导公式。

1、认识圆的面积

师出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?

出示结语:圆所占平面的大小叫做圆的面积

[设计意图:通过多媒体演示圆的面积让学生在充分直观感知圆面积的基础上,概括出圆面积的意义。]

1、 估算圆的面积

师:圆的面积有多大呢?我们先来估计一下吧。如图所示:以这个圆的半径r为边画一个小正方形。

提问:小正方形的面积怎样表示?(板书:r2)大正方形的面积又怎样表示?如果用r来表示大正方形的面积又如何表示?(4 r2)那么,认真观察一下,与大正方形比,圆的面积与大正方形有什么关系?(老师把学生答案写在黑板上。)

师:很显然,这个圆的面积小于<4 r2.这个估计只能是个大概,要准确地求出圆的面积,还必须找到科学的方法。

[设计意图:巧设估算圆的面积这个环节 ,使学生对圆面积与r2的倍数关系,获得十分鲜明的表象, 让学生带着悬念去探索推导公式,与后面得出圆面积计算公式后的验证前后呼应,加深学生对圆面积的计算公式的理解和记忆。]

3、积极动脑,讨论推导方法

回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的? ——引导转化

[设计意图:创设问题情境,启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。激起学生用旧知探索新知的兴趣,并明确用转化的数学思想方法。]

4、 小组合作,推导公式

师:那圆可转化为哪一个学过的图形呢?小组可以剪一剪、拼一拼,试试看!哪怕是近似的图形也可以。小组讨论,设计方案。展示在投影仪上并汇报。

师:比较一下,你更喜欢哪一种?为什么?

你们是沿着什么来剪的?为什么要沿着半径来剪呢? (圆的面积与半径有关)。

师:这种思路给了我们很大的启发!按照这种思路拼成的近似的平行四边形你们都很满意了吗?那么有没有什么办法让它的边变得更直呢?再剪几份,你是说把它分得更多份些,是吗?(可以把它分得更多份些)

师:请拿出手中的圆片试着折一折,展开来,看看你折成了几等份?(学生展示并汇报)

如果再折下去可以吗?现在老师就把你们折的这几种方案输入电脑。八等份、十六等份、三十二等份。(课件演示八分法、十六分法、三十二分法的展开图)

师:观察这三种分法,比较一下,同样大小的圆平均分的份数不同,拼出来的图形有什么变化?—— 发现:平均分的份数越多,拼成的图形越接近长方形。

[设计意图:通过小组汇报、采访小组等不同形式,来调动学生的多种感官参与学习,发挥学生的主体作用,培养学生主动探究、互助合作的精神,并通过电脑验证,使学生进一步明确圆可以拼成的近似的长方形,渗透化曲为直的方法。]

三、转化成长方形,研究推出圆面积公式——解决问题

1、设疑:我们沿着半径把圆切开,巧妙地把圆拼成了近似的长方形,现在我们可以利用长方形的面积公式来推导圆的面积公式。今天,我们就把圆进行十六等分来研究。请四人组拿出十六等份的圆和讨论提纲,小组合作探究 ,动手摆一摆,边观察、边讨论、边记录、边推导,看哪组合作得最快最好!

课件出现以下问题:(1)长方形的长相当于圆的 ?(2)长方形的宽相当于圆的 ? (3)长方形的面积相当于圆的 ?(4)因为长方形的面积=

所以圆的面积= 。

2、小组四人带讨论提纲汇报拼的过程并演示,媒体演示公式推导过程

3、揭示字母公式,验证猜想

4、小结:可见要求圆的面积只要知道什么就行?(半径r)

[设计意图:通过分组讨论汇报、试写面积公式等不同形式。再借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

四、应用知识,解决问题

1、师:现在我再回到羊吃草的问题上来看看,告诉你们拴着羊的绳子长是3米,你能运用所学的知识解决羊吃草的问题吗?(学生运用公式直接做,独立解决,集体订正。)

2、完成p69做一做第一题一个圆形茶几桌面的直径是1m,它的面积是多少?

3、出示喷灌装置图,

师:瞧,这是一种自动旋转喷灌装置。认真观察一下,这里隐藏着什么样的数学问题呢?公园草地上一种自动旋转喷灌装置的射程是15米。它能喷灌的面积有多少平方米?

提示:射程相当于圆的半径,灌溉面大约相当于圆的面积,

4.要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?

[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

五、课堂总结,渗透学法(略)

(本设计在首届智慧互动成长全国青年教师教学设计大赛中获一等奖。)

设计思路:

一、创设生活情境和问题情境,激发学习兴趣。

通过课件演示,先创设羊吃草的情境,引出求圆的面积的问题,再通过课件演示圆片的上色过程,让学生感知并认识圆的面积。在学习新知之前,通过正方形和圆形的大小比较,让学生猜测并估算出圆的面积大约的范围,激发学生带着悬念,迫不及待想去推导出圆的面积公式来验证自己的猜测。

二、动手剪拼,体验“化曲为直”

让学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生用“转化”的好方法,去探究圆的面积计算公式。放手让学生动手把圆剪拼成各种图形,鼓励不同拼法,让学生通过比较得出沿半径剪拼的方法是较为科学的,让学生尝试把圆拼成学过的平面图形,为后面推导面积的计算公式作了充分的铺垫。

三、多媒体演示操作,感受知识的形成

通过多媒体演示,分小组拼摆学具,让学生多种感官参与。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样以学生为主体,让学生在学习过程中,思维的能动性和创造性得到充分激发,探索能力、小组合作能力,分析问题和解决问题的能力都得到了提高。

四、分层练习,体验运用价值

结合所学的知识,让学生学以致用。解决了创设的情境问题等基础练习、提高练习、综合练习三个层次,从三个不同的层面对学生的学习情况进行检测。既巩固所学的知识,又锻炼了学生的综合运用能力,拓展学生的思维,注重了每个练习的指导侧重点。

教学反思:

本节课较好地完成了教学目标,学生学习积极性高,乐学,课堂气氛活跃、和谐。学生亲身经历提出猜想、动手实践、分析验证、得出结论的过程,对知识进行“再创造”。 他们在自主探索与合作交流的过程中能较好地理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。在“猜想—验证”来展开知识的发生发展过程,促使学生主动探索;创设开放的问题情境,为学生提供解决实际问题的机会,较好地培养学生应用数学的意识;学生在民主、和谐的教学氛围中,以小组合作的形式自主探索,通过观察、操作、猜测、验证、推理等活动,全面参与新知的发生、发展和形成过程,学会与人交往,自我反思,自主评价。整个知识的形成过程,对提高学生的动手操作能力,小组合作能力,探索和创新能力以及培养学生良好的思维品质,具有十分积极的作用。但也存在一些不足之处:这节课我在课堂评价方面还有所欠缺,在指导学生推导“圆的面积”计算公式时,学生的思维又比较活跃,提出了多种拼法,由于课堂时间有限,有所顾虑,处理的偏急躁些,没有真正放手让学生去深究,无形中抹杀了一些较好资源;其次,学生在课堂上的“再创造”显然是不可能完全离开教师指导的,一有指导,就意味着学生的一部份自主要失去,所以,老师的指导和学生的自主两者之间如何取得平衡?这些问题将是我以后要探索的。

相关推荐

热门文档

20 455482