高一数学教案优质5篇
【导言】此例“高一数学教案优质5篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
高一数学教案【第一篇】
一、教材分析
函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。
二、重难点分析
根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。
三、学情分析
1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。
四、目标分析
1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
五、教法学法
本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。
高一必修二数学教案41、教材(教学内容)
本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、
2、设计理念
本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、
3、教学目标
知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、
过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、
4、重点难点
重点:任意角三角函数的定义、
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、
5、学情分析
学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、
6、教法分析
“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、
7、学法分析
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。
高一数学教案【第二篇】
[教学重、难点]
认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。
[教学准备]
学生、老师剪下附页2中的图2。
[教学过程]
一、画一画,说一说
1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。
2、教师巡查练习情况。
3、学生展示练习,说一说为什么是锐角、直角、钝角?
二、分一分
1、小组活动;把附页2中的图2中的三角形进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分?
2、汇报:分类的标准和方法。可以按角来分,可以按边来分。
二、按角分类:
1、观察第一类三角形有什么共同的特点,从而归纳出三个角都是锐角的'三角形是锐角三角形。
2、观察第二类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形
3、观察第三类三角形有什么共同的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。
三、按边分类:
1、观察这类三角形的边有什么共同的特点,引导学生发现每个三角形中都有两条边相等,这样的三角形叫等腰三角形,并介绍各部分的名称。
2、引导学生发现有的三角形三条边都相等,这样的三角形是等边三角形。讨论等边三角形是等腰三角形吗?
四、填一填:
24、25页让学生辨认各种三角形。
五、练一练:
第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能决定是一个锐角三角形,必须三个角都是锐角才是锐角三角形。
第2题:在点子图上画三角形第3题:剪一剪。
六、完成26页实践活动。
高一数学教案【第三篇】
学 习 目 标
1明确空间直角坐标系是如何建立;明确空间中任意一点如何表示;
2 能够在空间直角坐标系中求出点坐标
教 学 过 程
一 自 主 学 习
1平面直角坐标系建立方法,点坐标确定过程、表示方法?
2一个点在平面怎么表示?在空间呢?
3关于一些对称点坐标求法
关于坐标平面 对称点 ;
关于坐标平面 对称点 ;
关于坐标平面 对称点 ;
关于 轴对称点 ;
关于 对轴称点 ;
关于 轴对称点 ;
二 师 生 互动
例1在长方体 中, , 写出 四点坐标
讨论:若以 点为原点,以射线 方向分别为 轴,建立空间直角坐标系,则各顶点坐标又是怎样呢?
变式:已知 ,描出它在空间位置
例2 为正四棱锥, 为底面中心,若 ,试建立空间直角坐标系,并确定各顶点坐标
练1 建立适当直角坐标系,确定棱长为3正四面体各顶点坐标
练2 已知 是棱长为2正方体, 分别为 和 中点,建立适当空间直角坐标系,试写出图中各中点坐标
三 巩 固 练 习
1 关于空间直角坐标系叙述正确是( )
A 中 位置是可以互换
B空间直角坐标系中点与一个三元有序数组是一种一一对应关系
C空间直角坐标系中三条坐标轴把空间分为八个部分
D某点在不同空间直角坐标系中坐标位置可以相同
2 已知点 ,则点 关于原点对称点坐标为( )
A B C D
3 已知 三个顶点坐标分别为 ,则 重心坐标为( )
A B C D
4 已知 为平行四边形,且 , 则顶点 坐标
5 方程 几何意义是
四 课 后 反 思
五 课 后 巩 固 练 习
1 在空间直角坐标系中,给定点 ,求它分别关于坐标平面,坐标轴和原点对称点坐标
2 设有长方体 ,长、宽、高分别为 是线段 中点分别以 所在直线为 轴, 轴, 轴,建立空间直角坐标系
⑴求 坐标;
⑵求 坐标;
高一数学教案【第四篇】
第一节 集合的含义与表示
学时:1学时
[学习引导]
一、自主学习
1.阅读课本 .
2.回答问题:
⑴本节内容有哪些概念和知识点?
⑵尝试说出相关概念的含义?
3完成 练习
4小结
二、方法指导
1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。
2、理解集合元素的特性,并会判断元素与集合的关系
3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。
4、在学习中要特别注意理解空集的意义和记法
[思考引导]
一、提问题
1.集合中的元素有什么特点?
2、集合的常用表示法有哪些?
3、集合如何分类?
4.元素与集合具有什么关系?如何用数学语言表述?
5集合 和 是否相同?
二、变题目
1.下列各组对象不能构成集合的是( )
A.北京大学2008级新生
个英文字母
C.著名的艺术家
年北京奥运会中所设定的比赛项目
2.下列语句:①0与 表示同一个集合;
②由1,2,3组成的集合可表示为 或 ;
③方程 的解集可表示为 ;
④集合 可以用列举法表示。
其中正确的是( )
A.①和④ B.②和③
C.② D.以上语句都不对
[总结引导]
1.集合中元素的三特性:
2.集合、元素、及其相互关系的数学符号语言的表示和理解:
3.空集的含义:
[拓展引导]
1.课外作业: 习题11第 题;
2.若集合 ,求实数 的值;
3.若集合 只有一个元素,则实数 的值为 ;若 为空集,则 的取值范围是 .
撰稿:程晓杰 审稿:宋庆
高一数学教案【第五篇】
数学课堂教学
三维目标的具体内容和层次划分
请阐述数学课堂教学三维目标的具体内容和层次划分
知识与技能掌握应用,既是课堂教学的出发点,又是课堂教学的归宿。教与学,都要通过知识与技能来体现的。那么,什么是三维目标内容呢?
所谓三维目标是是指:“知识与技能”,“过程和方法”、“情感、态度、价值观”。
知识与技能:既是课堂教学的出发点,又是课堂教学的归宿。我们在教学过程中,需要学生掌握什么,哪些些问题需要重点掌握,哪些只需简单理解;技能是会与不会的问题。属显性范畴,具有可测性,大都采用定量分析与评价、知识与技能是传统教学合理的'内核,是我国传统教育教学的优势,应该从传统教学中继承与发扬。新课改不是不要双基,而是不要过度的强调双基,而舍弃弱化其它有价值的东西,导致非全面、不和蔼的发展。
过程与方法:既是课堂教学的目标之一,又是课堂教学的操作系统。“过程和方法”维度的目标立足于让学生会学,新课程倡导对学与教的过程的体验、方法的选择,是在知识与能力目标基础上对教学目标的进一步开发。过程与方法是一个体验的过程、发现的过程,不但可以让学生体验到科学发展的过程,我们更多地要让学生掌握过程,不一定要统一的结果。
情感、态度与价值观:既是课堂教学的目标之一,又是课堂教学的动力系统。“情感、态度和价值观”,目标立足于让学生乐学,新课程倡导对学与教的情感体验、态度形成、价值观的体现,是在知识与能力、过程与方法目标基础上对教学目标深层次的开拓,只有学生充分的认识到他们肩负的责任,就能够激发起他们的学习热情,他们才会有浓厚的学习兴趣,才能学有所成,将来回报社会。
三维目标不是三个目标,也不是三种目标,是一个问题的三个方面。三维目标是三位一体不可分割的,他们是相辅相成的,相互促进的。