初中数学教案精选8篇
【导言】此例“初中数学教案精选8篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
初中数学教案【第一篇】
教学目标:
1、理解并掌握三角形中位线的概念、性质,会利用三角形中位线的性质解决有关问题。
2、经历探索三角形中位线性质的过程,让学生实现动手实践、自主探索、合作交流的学习过程。
3、通过对问题的探索研究,培养学生分析问题和解决问题的能力以及思维的灵活性。
4、培养学生大胆猜想、合理论证的科学精神。
教学重点:
探索并运用三角形中位线的性质。
教学难点:
运用转化思想解决有关问题。
教学方法:
创设情境——建立数学模型——应用——拓展提高
教学过程:
情境创设:测量不可达两点距离。
探索活动:
活动一:剪纸拼图。
操作:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形。
观察、猜想: 四边形BCFD是什么四边形。
探索: 如何说明四边形BCFD是平行四边形?
活动二:探索三角形中位线的性质。
应用
练习及解决情境问题。
例题教学
操作——猜想——验证
拓展:数学实验室
小结:布置作业。
初中数学教案详案【第二篇】
教案(教学设计)较为中规中矩的格式:
(适用于各种文体教学设计的套用,套用时中间部分的板块可以依据实际课文的教学要求进行适当省略,板块名可以自己独创命名。)
《****》教学设计/《****》教案 班级 姓名
教材解读(包括学习内容分析,考试时不写)设计理念(考试时不写)教学目标 1.知识与能力目标 2.过程与方法目标 3.情感态度与价值观目标 教学重(难)点
(重点、难点都有,可分述,亦可合称为“教学重难点”,二者各自最多一两点,不可多。)
教学方法(考试时不写)
课时安排第一课时(可以多写为“两课时”)教学准备多媒体课件辅助教学 教学过程 第一课时
一、激情读,引出文本
1.例如:问题导入、承上启下导入、检查预习导入等。 2.板书课题,师生齐读课题。3.激发学生的阅读兴趣,进入课文自由朗读。导入环节的设计意图,结合相关教心学等理论。
二、尝试读,感知文本
1.介绍篇幅、生字个数,落实重难点生字词的教学。 2.学生自由朗读课文,教师巡视指导学生读书。
三、思考读,感悟文本 1.促读:师的话。学生的回答、表现预设。2.促问:师的话。学生的回答、表现预设。3.促思:师的话。学生的回答、表现预设。4.促说:师的话。学生的回答、表现预设。
本环节的设计意图,结合相关的教心学等理论。
四、展示读,内化文本 (本环节解决文本的整体问题)1.第一段:
第2 / 4页
师的引导语。
请生个人朗读、谈体会。师的评价语。2.第二段: 师的引导语。
请男女生分角色朗读、谈体会。师的评价语。3.第n段: 师的引导语。
请生齐声朗读、谈体会。师的评价语。
本环节的设计意图,结合相关的教心学等理论。
五、探究读,赏析文本
1.小结引读。(对
二、三、四环节进行小总结。)2.师生对话。(一般是为了攻克1篇课文的难点问题。)3.激情引读。(通过学生自由朗读来思考重难点问题。)4.再读体会。(通过学生默读、写批注体会来解决重难点。)5.师生对话。
(教师引导学生个人起立交流心得、并及时评点提升。)本环节的设计意图,结合相关的教心学等理论。
第3 / 4页
六、无声读,超越文本 1.引导质疑。(例如:争鸣式)
(教师通过提问,引起学生质疑课文难点问题,并默读思考。)2.师生对话。(师生对话,学生各抒己见,教师联系实际进行拓展教育。)3.总结下课。
(结合板书总结一堂课的教学、点题结束课堂。)4.布置作业。
(布置作业要求:作业应体现分层性;作业设计的形式 应体现多样性;作业的内容应体现趣味性;作业的内容应 体现实践性〈练了会用〉。)
本环节及作业的设计意图,结合相关的教心学等理论。 附: 板书设计
概括式、对比式、板画式、线条(图表)式等。
初中数学教案 初中数学教案.doc【第三篇】
利用数形结合的数学思想分析问题解决问题。
利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。
在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。
运用数形结合的思想方法进行解二次函数,这是重点也是难点。
(一)引入:
分组复习旧知。
探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?
可引导学生从几个方面进行讨论:
(1)如何画图
(2)顶点、图象与坐标轴的交点
(3)所形成的三角形以及四边形的面积
(4)对称轴
从上面的问题导入今天的课题二次函数中的图象与性质。
(二)新授:
1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点a,且与x轴交于点b、c;在抛物线上求一点e使sbce= sabc。
再探索:在抛物线y=x2+4x+3上找一点f,使bce与bcd全等。
再探索:在抛物线y=x2+4x+3上找一点m,使bom与abc相似。
2、让同学讨论:从已知条件如何求二次函数的解析式。
例如:已知一抛物线的顶点坐标是c(2,1)且与x轴交于点a、点b,已知sabc=3,求抛物线的解析式。
(三)提高练习
根据我们学校人人皆知的船模特色项目设计了这样一个情境:
让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。
让学生在练习中体会二次函数的图象与性质在解题中的作用。
(四)让学生讨论小结(略)
(五)作业布置
1、在直角坐标平面内,点o为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点a(x1,0)、b(x2,0)且(x1+1)(x2+1)=—8。
(1)求二次函数的解析式;
(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为c,顶点为p,求 poc的面积。
2、如图,一个二次函数的图象与直线y= x—1的交点a、b分别在x、y轴上,点c在二次函数图象上,且cbab,cb=ab,求这个二次函数的解析式。
3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度ab=5cm,拱高oc=0。9cm,线段de表示大桥拱内桥长,de∥ab,如图()1,在比例图上,以直线ab为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。
(1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;
(2)如果de与ab的距离om=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)
初中数学教案 初中数学教案.doc【第四篇】
(一)内容
概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.
(二)内容解析
现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.
(一)教学目标
1.理解不等式的概念
2.理解不等式的解与解集的意义,理解它们的区别与联系
3.了解解不等式的概念
4.用数轴来表示简单不等式的解集
(二)目标解析
1.达成目标1的标志是:能正确区别不等式、等式以及代数式.
2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.
3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.
4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.
本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.
因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.
利用多媒体直观演示课前引入问题,激发学生的学习兴趣.
(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.
(二)立足实际引出新知
问题一辆匀速行驶的汽车在11︰20距离a地50km,要在12︰00之前驶过a地,车速应满足什么条件?
小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)
1.从时间方面虑:
2.从行程方面:<>50 3.从速度方面考虑:x>50÷
设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.
1.不等式
设问1:什么是不等式?
设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.
2.不等式的解
设问1:什么是不等式的解?设问
2:不等式的解是唯一的吗?由学生自学再讨论.
老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式
3.不等式的解集
设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问
2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.
老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.
4.解不等式
设问1:什么是解不等式?由学生回答.
老师强调:解不等式是一个过程.
设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.
问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题
2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.
设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.
提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题
1、什么是不等式?
<的解集,也是不等式>50
2、什么是不等式的解?
3、什么是不等式的解集,它与不等式的解有什么区别与联系?
4、用数轴表示不等式的解集要注意哪些方面?
设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.
教科书第119页第1题,第120页第2,3题.
设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.
1.填空
下列式子中属于不等式的有___________________________
①x +7>
②②x≥ y + 2 = 0④ 5x + 7设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.
2.用不等式表示① a与5的和小于7 ② a的与b的3倍的和是非负数
③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.
初中数学教案 初中数学教案.doc【第五篇】
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
一、试一试
1、设矩形花圃的垂直于墙的一边ab的长为xm,先取x的一些值,算出矩形的另一边bc的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
2、x的值是否可以任意取?有限定范围吗?
3、我们发现,当ab的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,
对于1.可让学生根据表中给出的ab的长,填出相应的bc的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当ab的长为5cm,bc的长为10m时,围成的矩形面积最大;最大面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x<10。对于3,教师可提出问题,(1)当ab=xm时,bc长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函数关系式.
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:
1、商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2、如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3、若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
[(10-8-x);(100+100x)]
4、x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]
5、若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x)(100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0<x<10=化为:
y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20d(0≤x≤2)……………………(2)
三、观察;概括
1、教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及p1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2、二次函数定义:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1、(口答)下列函数中,哪些是二次函数?
(1)y=5x+1(2)y=4x2-1
(3)y=2x3-3x2(4)y=5x4-3x+1
2、p3练习第1,2题。
五、小结
1、请叙述二次函数的定义.
2、许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业:略