首页 > 学习资料 > 教案大全 >

解一元一次方程教案(精编3篇)

网友发表时间 1900412

【前言导读】这篇优秀教案“解一元一次方程教案(精编3篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

教学环节安排1

环节教学问题设计教学活动设计

入牵线搭桥,解下列方程:

(1)-5x+5=-6x;(2);

(3)+=;

总结解“ax+b=cx+d”类型的一元一次方程的步骤方法。

引出问题即课本例3

问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求。

学生:独立完成,根据讲评核对、自我评价,了解掌握情况。

探究一:数字问题

例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?

分析1.引导学生观察这列数有什么规律?

①数值变化规律?②符号变化规律?

结论:后面一个数是前一个数的-3倍。

2、怎样求出这三个数?

①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?

②列出方程:根据三个数的和是-1701列出方程。

③解略

变式:你能设其它的数列方程解出吗?试一试。比比较哪种设法简单。

探究二:百分比问题(习题第8题)

问题某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%。今年人均收入比去年的倍少1200元。这个乡去年农民人均收入是多少元?

分析①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;

②因为今年的人均收入比去年的倍少1200元,所以今年的收入又可以表示为_________元。

③根据“表示同一个量的两个式子相等”可以列出方程为________________________.

解答略教师:引导学生分析。

2、本例是有关数列的数学问题,题要求出三个未知数,这需要学生观察发现它们的排列规律,问题具有一定的挑战性,能激发学生学习探索规律类型的问题。

学生:观察、讨论、阐述自己的发现,并互相交流。

根据分析列出方程并解出,求出所求三个数。

备注:寻找数的排列规律是难点,可让学生小组内讨论发现、解决。

变换设法,列出方程,比较优劣、阐述发现和体会。

教师:出示题目,引导学生,让学生尝试分析,多鼓励。

学生:根据引导思考、回答、阐述自己的观点和认识。

根据共同的分析,列出方程并解出,

(说明:此题目数以百分比、增长率问题可根据实际情况安排,若没时间,可在习题课上处理)

尝试应用

1、填空

(1)有个三位数,个位上的数字是a,十位上的数字是b,百位上的数字是c,则这个三位数是:_______________.

(2)有一数列,按一定规律排成1,-2,3,2,-4,6,3,-6,9,接下来的三个数为_____________________.

(3)三个连续偶数,设第一个为2x,那么第二个为_______,第三个为______,它们的和是__________;若设中间的一个为x,那么第一个为_____,第三个为______,它们的和是__________.

2、一个三位数,三个数位上的数字的'和为17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,你能求出这个三位数吗?这是最经常出现的一类数字问题:引导学生分析已知各位上的数字,怎么表示这个数,理解为什么不能表示成cba?这是解决这类问题的基础。

通过(3)题理解连续数的表示法,并感受怎么表示最简单。

通过2题让学生理解怎么设?以及怎么设简单(舍都有联系的一个),并感受用未知数表示多个未知量,顺藤摸瓜,从而列出方程的顺向思维方式。

教师:结合完成题目,汇总讲解,重点在于解法。

成果

展示1.通过本节所学你有哪些收获?

2、谈谈你掌握的方法和学习的感受,以及你对应用方程解决问题的体会。学生自我阐述,教师评价鼓励、补充总结。

补偿提高1.有一数列,按一定规律排成0,2,6,12,20,30,…,则第8个数为______,第n个数为_____.

2、下面给出的是2010年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,圈出的三个数的和不可能是( )。

通过练习,掌握数字问题的分类及不同解法,巩固、体会用方程解决问题的思路和思维方式,学会用方程解决问题。

题目设置是对前面学生所出现的问题进行针对性的补偿和补充,也可对学有余力的学生拓展提高。

根据学生完成情况灵活设置问题。

作业

设计作业:

必做题:课本4、5、第94页6题。

选做题:同步探究。教师布置作业,并提出要求。

学生课下独立完成,延续课堂。

授课教师:

2012年10月31日

解一元一次方程的教案2

教学目标:

1.使学生进一步掌握解一元一次方程的移项规律。

2.掌握带有括号的一元一次方程的解法;

3.培养学生观察、分析、转化的能力,同时提高他们的运算能力。

教学重点:

带有括号的一元一次方程的解法。

教学难点:

解一元一次方程的移项规律。

教学手段:

引导——活动——讨论

教学方法:

启发式教学

教学过程

(一)、情境创设:

知识复习

(二)引导探究:带括号的方程的解法。

例(x-2)-3(4x-1)=9(1-x).

解:(怎样才能将所给方程转化为例1所示方程的形式呢?请学生回答)

去括号,得:

移项,得:

合并同类项,得:

系数化1,得:

遇有带括号的一元一次方程的解法步骤:

(三)练习:(A)组

1.下列方程的解法对不对?若不对怎样改正?

解方程2(x+3)-5(1-x)=3(x-1)

解:2x+3-5-5x=3x-1,

2x-5x-3x=3+5-3,

-6x=-1,

2.解方程:

(1)10y+7=12-5-3y;(2)=

3.解方程:

(1)3(y+4)12;(2)2-(1-z)=-2;

(B)组

(1)2(3y-4)+7(4-y)=4y;(2)4x-3(20-x)=6x-7(9-x);

(3)3(2y+1)=2(1+y)+3(y+3)(4)8x+4=2(4x+3)-2(-3+x)

(四)教学小结

本节课都教学哪些内容?

哪些思想方法?

应注意什么?

《解方程》教学设计3

教学内容:教材P69例4、例5及练习十五第6、8、9、13题。

教学目标:

知识与技能:巩固利用等式的性质解方程的知识,学会解ax ±b=c与a(x ±b)=c类型的方程。

过程与方法:进一步掌握解方程的书写格式和写法。

情感、态度与价值观:在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

教学重点:理解在解方程过程中,把一个式子看作一个整体。

教学难点:理解解方程的方法。

教学方法:观察、分析、抽象、概括和交流。

教学准备:多媒体。

教学过程

一、复习导入

1.出示习题:解下面方程:4x = =

学生自主解答练习,并说一说是怎么做的。并在订正的过程中,规范书写。

2.引出:这节课我们来继续学习解方程。(板书课题:解方程)

二、互动新授

1.出示教材第69页例4情境图。

引导学生观察,并说一说图意。再让学生根据图列一个方程。

学生列出方程3x +4=40后,让学生说一说怎么想的。

(一盒铅笔盒有x 支铅笔,3盒铅笔盒就有3x 支铅笔。)

在学生说自己的想法时,引导学生说出把3个未知的铅笔盒看作一部分,4支铅笔看作一部分。

2.让学生试着求出方程的解。

学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。

学生可能会疑惑:方程的左边是个二级运算不知识如何解。

也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

提问:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

学生会说:先算出3个铅笔盒一共多少支,再加上外面的4支。

师小结:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?(3x )

让学生尝试继续解答,订正。

根据学生的回答,板书解题过程:

3x +4=40

解: 3x =40-4

3x =36 (先把3x 看成一个整体)

3x ÷3=36÷3

x =12

让学生同桌之间再说一说解方程的过程。

3.出示教材第69页例5:解方程2(x -16)=8。

先让学生说一说方程左边的运算顺序:先算x -16,再乘2,积是8。

思考:你能把它转换成你会解的方程吗?

让学生尝试解方程,再在小组内交流自己的做法,然后集体订正,学生可能会有两种做法:

(1)利用例4的方法来解。

让学生说一说自己的思考,重点说一说把什么看作一个整体?

(先把x -16看作一个整体。)板书计算过程:

2(x -16)=8

解:2(x -16)÷2=8÷2(把x -16看作一个整体)

x -16=4

x -16+16=4+16

x =20

(2)用运算定律来解。

引导学生观察方程,有些学生会看出这个方程是乘法分配律的逆运算。可以运用乘法分配律把它转化成我们学过的方程来解。

根据学生回答,板书计算过程:

2(x -16)=8

解: 2x -32=8 (运用了乘法分配律)

2x -32+32=8+32 (把2x 看作一个整体)

2x =40

2x ÷2=40÷2

x =20

4.让学生检验方程的解是否正确。先说一说如何检验,再自主检验。

(可以把方程的解代入方程中计算,看看方程左右两边是否相等。)

三、巩固拓展

1.完成教材第69页“做一做”第1题。

先让学生分析图意,再列方程解答。解答时,让学生说一说自己的想法,把谁看作一个整体。(可以把5个练习本的总价5x 看作一个整体。)

2.完成教材第69页“做一做”第2题。

先让学生自主解方程,再集体订正。

3.完成教材第71页“练习十五”第8题。

先让学生说一说图意,再列方程解答。特别是第一幅图,要提醒学生天平两边的砝码不一样重,审题要细心。第二幅图,学生可能会列出方程30×2+2x =158,再引导学生观察有两个30和两个x ,可以运用乘法分配律。

四、课堂小结

这节课你学会了什么知识?有哪些收获?

引导总结:1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

2.在解方程时,可以运用运算定律来解。

作业:教材第71~72页练习十五第6、9、13题。

板书设计:

解方程

例4:3x +4=40

解: 3x =40-4 (先把3x 看成一个整体)

3x =36

3x ÷3=36÷3

x =12

例5:2(x -16)=8 (把x -16看作一个整体)

方法1: 方法2:

解:2(x -16)÷2=8÷2 解:2x -32=8 (运用了乘法分配律)

x -16=4 x -32+32=8+32 (把2x 看作一个整体)

x -16+16=4+16 2x =40

x =20 2x ÷2=40÷2

X =20

相关推荐

热门文档

20 1900412