五年级数学《梯形面积的计算》教案优推17篇
通过引导学生理解梯形的定义和性质,掌握梯形面积公式的推导与应用,结合实际问题进行练习,激发学生的数学思维,能否熟练运用呢?以下由阿拉网友整理分享的五年级数学《梯形面积的计算》教案相关文章,便您学习参考,喜欢就分享给朋友吧!
《梯形的面积》教案 篇1:
今天我说课的内容是:
一、说教材
1、说教材的地位和作用
《梯形的面积》是人教版五年级数学上册第五单元的一个课时。这节课,是在学生认识了梯形特征,经历、探索了平行四边形、三角形的面积计算的推导方法,并形成了一定空间观念的基础上进行教学的。因此,教材中没有安排数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算的方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。
2、说教学目标、重点、难点
根据本节课的教学内容和五年级学生的认知规律,本课的教学目标确定为:
知识与技能:在实际情境中,认识计算梯形面积的必要性。能运用梯形面积的计算公式,解决相应的实际问题。
过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力。在自主探索和小组合作探索的活动中,经历推导梯形面积公式的过程。
情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。
教学重点: 理解并掌握梯形面积计算公式,正确计算梯形的面积。
教学难点: 梯形面积计算方法的推导过程。
二、说学生
由于学生学习了平行四边形、三角形的面积计算方法,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。学生受思维定势的影响,很容易就会利用两个完全相同的梯形转化成平行四边形的面积推导出梯形的面积公式,而用一个梯形推导出梯形的面积公式对有的学生来说,会有一定的难度。另外,由于班额人数较多,因此在合作中给教师的指导带来了一定的困难。
三、说教学策略
根据教学的三维目标,结合几何形体教学的特点,我采用以下的教学方法:
1、知识的迁移法:在教学活动中,充分尊重学生已有的知识与生活经验,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。
2、采用“小组活动,合作探究的教学方法”。
在教学中,组织学生开展探索性的数学活动,注重知识发现和探索过程;体现变知识的接受过程为科学的探究过程,利用学生的合作探究能力,引导学生自主学习。
3、采用直观教学法。
在教学中运用直观演示,来突出教学重点,从而启发学生思维,帮助学生突破学习的难点。
通过本节课的教学,使学生学会以旧引新,学法迁移进行学习,培养学生的自学能力和探索精神,提高学生自主发现问题,分析问题,解决问题的能力。
四、说教学实施过程
基于上述认识与理解,我对梯形的面积教学流程作了如下设计:
第一环节:创设情境,导入新课
上课开始,根据我班现有的实际情况设计了这样的情境:“我们班同学喜欢听故事吗?”学生上五年级以来,最感兴趣的就是爱听故事。于是,我通过讲曹冲称象的故事,让学生悟出转化法来解决梯形的面积。由此,很自然的导入本节课。让学生认识到求梯形面积的必要性,同时也激发起了学生积极的学习情感。
第二环节:动手操作,探究新知
新课程标准强调:“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我设计了让学生自己去探求推导梯形面积的计算方法的活动。因为学生学过了三角形面积的推导,所以很容易就会想到用两个完全相同的梯形拼成平行四边形推导面积公式的途径。最后,再用课件直观展示出梯形面积的推导方法,加深学生的理解。
第三环节:合作探究,发散验证
在操作探究的基础上,我引导学生自己总结出了梯形面积的计算公式。然后,我向学生提问:“如果我们手中只有一个一般的梯形,你们能不能自己动脑想出别的方法验证我们刚才的发现呢?”以此来鼓励学生采用多种方法进行验证刚才的结论。
这样的设计,体现了让“学生自主探究、自主学习”的教学理念。通过展示学生们个性化的研究思路与成果,激发他们成功的学习体验和进一步深入研究的积极愿望。同时也达到 既突出“重点”,又化解“难点”的目的。
第四环节:应用公式,解决问题
数学知识来源于生活又服务于生活,要使学生真正学好数学,形成数学技能,必须密切联系学生的生活实际,使其体验数学在生活中的广泛应用。所以,围绕这个目的,我设计了下面的一些练习:
第一题:是判断题,加深学生对推导公式的印象。
第二题:基本题,例3,基本题,课本中的“做一做”。目的在于让学生准确使用梯形的面积计算公式。
第三题:是书中89页做一做,能发现了什么?目的在于让学生掌握梯形的面积计算公式。
第四题:课本90页的第1题,给学生空间想象能力及动手操作能力。
第五题:是一道变式练习,目的在于培养学生灵活运用公式的能力。
练习设计由浅入深,有层次性,让学生感受到通过努力而获得成功的喜悦。
第五环节:课堂回顾,总结收获
成功和体验是学生情感发展的基础,师生在交流中共享学习的快乐。
小学五年级上册数学《梯形面积的计算》教案 篇2:
课开始,我出示了五个梯形,两个完全一样的任意梯形,一个从梯形上底的一个顶点作高且高落在梯形外面的梯形,一个直角梯形和一个等腰梯形,要求同学们说说"这些梯形的特征".
生1:梯形有上底,下底和高。
生2:梯形只有一组对边平行。
这时出现了学生已有的错误资源,部分学生的知识结构中梯形的特征和各部分的名称相混淆。我的教学策略是:观察黑板上的五个梯形,让学生们理性地感悟到:梯形只有一组对边平行是它的特征,给平行的一组对边起的名字是叫"底",因为这两条底的长短不同,所以一条底叫上底,另一条底叫下底。
接着,揭示本节课教学目标——梯形的面积计算。
师:谁已经知道了梯形的面积计算方法
生1:我是通过预习知道的,梯形的面积=(上底+下底)×高÷2.
师:这个梯形的面积公式表达的是什么意思 比如"÷2"表示什么意思
生2:我是这样想的,两个完全一样的三角形可以拼成一个平行四边形,那么,两个完全一样的梯形也可以拼成一个平行四边形,一个梯形的面积是其中的一半,所以要"÷2".师:哪位同学上来拼拼看。(只有一会儿的冷场,有好几个同学举手,我指定一个女同学上黑板拼,她选择两个完全一样的梯形开始拼。第一下拼没成功,下面有同学提醒她倒过来拼,第二下倒过来拼也没成功,下面有同学提醒她要转过来,第三下成功了!)
师:(拿出另外一个和黑板上完全一样直角梯形)谁再上黑板来拼,也成一个平行四边形 (指定一个男同学上黑板拼,比较顺利,两下就成功了。)
师:观察拼成的平行四边形,和梯形相比较,你知道了什么
生3:它们的高是一样的,梯形的上底和下底合起来是平行四边形的底。(我又让几个同学说说他们的发现,并上黑板比比划划)
师:(拿出另外一个和黑板上完全一样一个从梯形上底的一个顶点作高且高落在梯形外面的梯形)哪个同学上来一下就拼成一个平行四边形
生4:(他接过我手中的梯形,看看有转了一下,放在黑板上同样的梯形旁就拼成了一个平行四边形)我是看它的上底和下底,只要上底和下底拼在一起就成了。
师:(拿出一个任意的梯形和黑板上不一样的梯形)谁也能和刚才的那位同学一样,一下就可以拼成一个平行四边形
一下用两个完全一样的梯形拼成一个平行四边形,对小学生来说有一定的挑战力,况且已有成功的前例,愿意上台表演的同学肯定多。而这时用"一个任意的梯形和黑板上不一样的梯形"去让学生拼,以达到加深对"用两个完全一样的梯形才可以拼成平行四边形"的理解。
生6:(举手的人更多了,教师指定一个学生上黑板)一下没成功,二下也没成功。4师:谁再来拼
生7:一下没成功,二下也没成功(下面有同学说,两个梯形不一样拼不成的),这位同学回到自己的座位上。
师:(这时还有一位同学高高举着手)你能 (他点点头)上来拼。
生8:(一下没成功,二下也没成功,……)真的不行!
然后,我引导学生们总结梯形面积的计算方法,并穿插了一道求梯形面积的练习题。想培养学生的求异思维,因此让学生们思考推导梯形面积的另外方法,(冷场好久,没人举手),我在电脑里演示了"沿梯形的中位线剪开,旋转平移拼成一个平行四边形".到此,我并没有强求学生们继续思考其他的推导梯形面积的方法,而是转入巩固练习的教学环节。
既然,学生没有其它方法推导梯形的面积公式,我认为,不必强求他们一定要去探究出其它推导方法。这里我演示"沿梯形的中位线剪开,旋转平移拼成一个平行四边形"一种推导方法,目的是用他人的思维去影响学生们的思维。
《梯形的面积》教案 篇3:
一、学情分析
学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。
因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。
二、教材分析
"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。
三、教学目标设计
1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。
2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说”活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。
3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。
四、教学重点难点
教学重点
1.理解并掌握梯形的面积计算公式。
2.运用梯形的面积计算公式解决问题。
教学难点
梯形面积公式的推导过程。
五、教学策略设计
我在导学"梯形的面积计算"时,并没有沿袭以往的教学思路,而是立足于学生已有的数学现实与经验,
六、教学过程设计
教学环节一
一、汇报预习的成果
(预习单)
1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?
2、对于梯形,你们已经知道了什么?
3、利用你手中的梯形,动手折折、剪剪、拼拼,你还能发现什么?
4、如何推导梯形的面积计算公式?谈谈你的想法。
学生汇报前三个:
生1:我发现任何梯形都可以分成两个三角形。
生2:我发现任何梯形都可以分成一个三角形和一个平行四边形。
师:善于观察,勇于实践,大家才会有如此丰富的发现。这节课,我们将在此基础上进一步研究"梯形的面积计算"。
(揭示课题)
设计意图
引导自由操作,有利于学生在较为轻松的状态下激活原有的"数学活动经验",为随后有目的的尝试、实验和验证作好铺垫。
教学环节二
二、"假设--实验--验证",引导学生体验数学知识"再创造"的过程。
师:汇报预习单第4个问题。如何推导梯形的面积计算公式?谈谈你的初步设想。
(学生分组交流。教师深入学生中倾听,并作必要的启发和引导)
生6:能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,如长方形、平行四边形或三角形,然后再来推导?
生7:可不可以像三角形那样,先合拼成一个大平行四边形,然后来推导?
生8:看看梯形的面积与已经学过的长方形、三角形及平行四边形等有什么联系,根据它们间的联系进行推导。
设计意图
交流对问题的初步设想,是准确把握学生已有数学现实的关键,也是实现"再创造"的开始。这对教师如何引导学生进行随后的"再创造"活动起着重要的作用。
教学环节
三、应用知识,自主探究
师:同学们是不是都有自己的想法了,想不想马上动手试试?
(学生独立或合作尝试转化。教师深入学生群体,听取意见,并对有困难的学生作必要的提示和启发)
教学环节四
设计意图
对数学材料实现"再创造",这不仅需要学生的独立思维,同时也需要组员间的相互启发以及教师的及时点拨与引导。也是上述教学过程中学生的"合作尝试"及教师的"个别指导"的意义。
四、汇报展示
师:不少同学已经成功地对自己的假设进行了验证,请向大家展示你们的研究思路与成果。
生1:我们组将两个完全一样的梯形拼合成一个平行四边形(见图1)。平行四边形的底相当于梯形上、下底的和,平行四边形的高相当于梯形的高。梯形的面积是拼成的平行四边形面积的一半,也即"梯形的面积=(上底+下底)×高÷2"。
师:能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。那么在这些方法中,你最欣赏哪一种,就请你借助手中的学具再次完成这一转化与推导过程,并在小组里进行交流。
设计意图:
引导学生及时交流,展示他们个性化的研究思路与成果,激发了他们成功的学习体验和进一步深入研究的积极愿望。
教学环节
五、在实践应用中拓展、延续数学知识的"再创造"。
师:(出示例题)请大家选择适合自己的面积计算公式求出梯形的面积。
(出示基本练习)测量数据,并计算出这些梯形的面积。
设计意图:
学生自由测量、计算并交流方法,教师对学生的学习过程作出即时评价和指导,鼓励学生对问题的不同理解及方法。
六、作业设计
师:学校决定在操场东侧宽10米的长方形空地上建造一些形状各异的梯形花坛。如果请你来设计,你觉得怎样设计比较合理?画出设计图,并预算出每一个花坛的占地面积。
(学生自由结合,分组进行构思、设计,并就占地面积进行计算与交流)
实践性练习又一次激发了学生"再创造"的热情,并为他们创造性地解决问题提供了机会,为提升他们的实践能力和创新品质营造了广阔的空间。
七、板书设计
梯形的面积
梯形的面积=(上底+下底)×高÷2转化
S梯形=(a+b)×h÷2(学生的方法展示)
八、预设效果
本堂课就学生来说的会在一次次思考和动手操作的过程中体会数学学习的乐趣。
九、课外知识的准备
了解多种转化的方法。
《梯形的面积》教案 篇4:
教学目标:
1.探索并掌握梯形的计算面积公式,能应用公式正确计算梯形的面积;
2.使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;
教学重、难点:
重点是探索并掌握梯形的面积公式,能正确计算形梯的面积。难点是理解梯形面积公式的推导过程。
教学过程
一、提出学习目标
1.创设情境:出示几个梯形,问,“这是什么图形?”并举生活实例。
师:你能用学过的方法推导出梯形的面积计算公式吗?这就是我们要研究的数学问题。(出示课题)
2.提出学习目标:
(1)小组合作、探究推导梯形面积的计算方法。
(2)应用公式解决实际问题。
二、展示学习成果
1.猜想:可以把梯形转化成已学过的平面图形吗?
2.小组内个人展示
学生先在小组内互相交流,探究方法。(完成后在小组内按学困生→中等生→优生的顺序进行展示,)
3.全班展示(以小组为单位),
⑴推导方法的展示:学生将学具贴在黑板上演示,然后说一说自己的发现。
①倍拼法。用两个完全一样的梯形拼成一个平行四边形。(质疑:梯形与平行四边形有什么关系?)得到: s=(a+b)h÷2
②割补法。沿着梯形两腰中点的连线剪开,拼成一个平行四边形。(质疑:随便剪吗?梯形和平行四边形有什么关系?)得到: s=(a+b)h÷2
③师介绍其他方法,让学生进行推导。得到: s=(a+b)h÷2
4.小结,质疑:为什么要“÷2”?完成板书。
(2)应用公式解决实际问题。(例3及“做一做”、练习十七的第1、2题)
讲解“横截面”,小组内完成。
三、拓展知识外延
1.请你辩一辩。
①两个面积相等的梯形一定可以拼成一个平行四边形。( )
②梯形的面积是平行四边形面积的一半。 ( )
③梯形的上下底都扩大两倍,高不变,面积也随着扩大两倍。( )
2.生活中的数学。练习十七的第6题。
四、总结完善
这节课同学们又有什么新的收获?
五、作业
1.练习十七的第3、4、5题
2.智力冲浪:练习十七的第8题。
小学五年级上册数学《梯形面积的计算》教案 篇5:
教学目标:
1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。
3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:
理解、掌握梯形面积的计算公式。
教学难点:
理解梯形面积公式的推导过程。
教学过程:
1.导入新课
(1)投影出示一个三角形,提问:
这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。
(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
2.新课展开
第一层次,推导公式
(1)操作学具
①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。
(2)观察思考
①教师提出问题引导学生观察。
a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b.每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
③字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,深化认识。
(1)启发学生回忆平行四边形面积公式的推导方法。
①提问:想一想平行四边形面积公式是怎样推导得到的?
②学生回答,教师在展示台再现平行四边形面积公式的推导方法。
(2)引导操作。
①平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?
②学生动手操作、探究、讨论,教师作适当指导。
(3)信息反馈,扩展思路。
说一说你是怎样割补的?教师展示各种割补方法。
第三层次,公式应用。
(1)出示课本第89页的例题,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。
3.巩固练习
(1)完成练习十七第1、2和3题。
(2)讨论完成练习十七第4和6题。
小学五年级上册数学《梯形面积的计算》教案 篇6:
一、解析教材内涵
这部分内容的教学是在学习了平行四边形和三角形面积计算的基础上进行的。与前两节一样,教材先通过小轿车车窗玻璃是梯形的这样一个生活实例引入梯形面积计算。然后通过学生动手实验探索出面积计算公式,最后用字母表示出梯形的面积计算公式。但是要求又有提高,不再给出具体的方法,而是要求用学过的方法去推导梯形面积计算公式。这里仍然要运用转化成已学过图形的方法,但是从教材中学生的操作可以看出,方法与途径多了,可以用分割的方法,也可以用拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。梯形面积计算公式推导有多种方法,教材显示了三种方法。
(1)两个一样的梯形拼成一个平行四边形。
(2)把一个梯形剪成两个三角形。
(3)把一个梯形剪成一个平行四边形和一个三角形。
还可以:从梯形两腰中点的连线将梯形剪开,拼成一个平行四边形,等等。
策略与方法:
(1)加强知识之间的联系,根据图形面积计算之间的内在联系安排教学顺序,以促进知识的迁移和学习能力的提高。
(2)体现动手操作、合作学习的学习方式,让学生经历自主探索的过程
(3)重视动手操作与实验,引导学生探究,渗透“转化”思想,注意培养学生用多种策略解决问题的意识和能力。
“梯形面积的计算”
二、 复习导入
1、单元知识梳理,揭示转化思想
师:同学们,我们在多边形的面积这一单元已经学习了平行四边形和三角形面积计算方法,那谁来说说怎样计算它们的面积?
师:请大家回忆一下,它们的面积计算方法是怎么推导出来的?
2、导入主题
师:我们都是把它们转化成学过的图形来研究面积。看来转化这种方法能帮助我们解决很多问题,今天这节课我们就借助这个方法来研究梯形的面积。(板书课题:梯形的面积)
三、利用转化,实践探究 1、初步的想法,互受启发
师:同学们来看,这是一个梯形。现在呀,就请大家想一想,怎样利用转化的方法知道梯形的面积怎样来计算呢?
2、动手实践,主动探知。
师:大家这样一说,我们的思路就打开了。其实还有很多方法,同学们没有说到。接下来我们就按照这个学习提纲深入地探究梯形面积的计算方法。
1、运用转化的方法,将梯形转化成学过的图形。
2、借助学过的方法推导梯形面积的计算方法。
3、填写学习单,小组进行交流。
3、交流反馈(学生拿学具到实物展台汇报,教师拿事先预设的大教具评价,记录)
预设:代表1:两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的(上底+下底),这个平行四边形的高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半,所以:
s=(a+b)×h÷2
代表2:把一个梯形分成两个三角形,其中一个三角形的底等于梯形的上底,高等于梯形的高;另一个三角形的底等于梯形的下底,高等于梯形的高。所以:梯形的面积=三角形1的面积+三角形2的面积
=梯形上底×高÷2+梯形下底×高÷2
=ah÷2+bh÷2
代表3:我把一个梯形分成一个平行四边形和一个三角形。平行四边形的底等于梯形的上底,平行四边形的高等于梯形的高;而三角形的底等于(梯形的下底-梯形的上底),三角形的高等于梯形的高。所以:梯形的面积= 平行四边形面积+三角形面积
= 平行四边形的底×高+三角形的底×高÷2
=ah+(b-a)h÷2
代表4:把梯形上下对折,沿着折痕剪开成两部分,并拼成一个平行四边形,平行四边形的底等于(梯形的上底+梯形的下底),平行四边形的高等于梯形的高÷2,梯形的面积等于拼成的平行四边形的面积。所以:
(a+b) ×(h÷2)
4、总结规律
师:同学们把梯形转化成我们学过的图形,推导出它的面积计算方法,并用字母式表示了出来。大家来看:教师将以上的公式整理成统一的公式。
5、找联系,字母归一
师:看来无论哪种方法我们都可以总结为梯形的面积计算方法就是
板书:梯形的面积=(上底+下底)×高÷2
S=(a+b)×h÷2
6、全课总结
师:同学们用了不同的方法推导出梯形的面积的计算公式是。。。。。。
四、课堂练习,知识巩固 学生练习本打8个格子,训练小组长批改。
1、口答:列式计算。(梯形图形3道)
2、解决问题 (梯形大坝)
3、车玻璃贴膜。(4个条件)快速列式?今后要选择需要的条件来解决问题。
4、篱笆问题 (书中课后练习)仔细读题,认真思考,在本子上列出算式,自批。
靠墙边围一个花坛,围花坛的篱笆长46米,求这个花坛的面积?
课件出示:闪3条边,闪上下边。为什么是3条边?
五、课堂反馈,作业预留
1、基本练习数学书90页第1题
2、解决问题:90页第2题、124页
3、变式练习:97页第1题。
4、阅读作业:①、还有哪些方法?②、阅读数学书。
小学五年级上册数学《梯形面积的计算》教案 篇7:
教学目标:
1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题
2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。
3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。
教学重点:
掌握梯形面积的计算公式,并会用公式解决实际问题。
教学难点:
理解梯形面积公式推导方法的多样化,体会转化的思想。
考点分析:
会用梯形面积公式解决实际问题。
教学方法:
游戏引入——新知讲授——巩固总结——练习提高
教学用具:
课件、多组两个完全相同的梯形。
教学过程:
一、提出问题(课件出示教材第95页的主题图)。
教师:同学们在图中发现了什么?
教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?
二、通过旧知迁移引出新课。
教师:同学们还记得平行四边形和三角形的面积怎么求吗?
1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。
2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法
3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?
三、揭示课题;
根据学生的回答,引出新课,梯形的面积。
板书课题--梯形的面积。
四、新知探究
1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。
2、请同学们打开学具袋,看看里面的梯形有什么特点?
生:各种梯形,每种两个,每种梯形颜色一样。
教师提出要求
①选择自己喜欢的梯形把它拼成我们学过的图形
②想一想,拼成怎样的图形,利用怎样的方法拼成的?
③它们的高与梯形的高有怎样的关系,它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?
④先独立思考后小组交流
生小组合作探究。师巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。
3、(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示。)
师引导得出如下几种推导思路:(师边利用课件演示边讲解)
思路一:用两个完全一样的梯形拼成一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出
梯形面积=(上底+下底)×高÷2
思路二:把梯形剪成一个平行四边形与一个三角形,梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出
梯形的面积 =上底×高+(下底-上底)×高÷2
=(上底+下底)×高÷2
思路三:沿梯形的一条对角线剪开,把梯形分割成两个三角形。得出梯形的面积等于两个三角形面积之和,从而推出
梯形的面积 =上底×高÷2+下底×高÷2
=(上底+下底)×高÷2
教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”。
师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?学生用字母表示出梯形的面积计算公式:S=(a+b)h÷2
五、巩固提升
1、(出示课件),三峡水电站全景图及第89页例3并读题。同时出示水电站的横截面的简图(梯形)。提问,实际求什么?
S =(a+b)h÷2
=(36+120)×135÷2
=156×135÷2
=10530(㎡)
2、计算下面图形的面积,你发现了什么?
六、总结结课
1、这节课你学到了什么?要计算梯形的面积,必须要知道几个条件?还要注意什么?
2、我们是怎样得出梯形面积的公式的?
(二)教师总结
今天我们利用转化的思想推导出了梯形的面积计算公式,并会用梯形的面积计算公式解决生活中的实际问题。
《梯形的面积》教案 篇8:
教学内容:人教版义务教育课程标准实验教科书《小学数学》五年级上册第88-89页
教学目标:
1.通过学习,学生理解、掌握梯形面积的计算公式,并会运用。
2.学生在梯形面积计算公式的推导过程中,发展空间观念,领悟转化思想,感受事物之间是密切联系的。
3.学生在探究中思考,在思考中发展,在发展中快乐,体验到数学是有趣的、有用的、是美的,激起学习数学的兴趣和自觉性。
课前准备:给每个小组准备两个完全一样的梯形、直角梯形、等腰梯形各一对,并用信封装好,剪刀一把。
教学过程
一、 创设情境,导入新课
师:我们的校园很美,现在学校准备在小操场上种上草皮进一步绿化、美化我们校园,(师出示一个近似梯形的地),这块地的形状是什么图形?现在要铺好这样一块地,学校至少要买多少草皮,就是算这块地的什么?怎样求梯形面积呢?这就是今天我们要研究的内容。
(设计意图:《数学课程标准》提出:学生数学学习的内容应当是现实的、有意义的、富有挑战性的。这里创设一个学生熟悉的情境,让学生感受到数学就在身边,学习数学是有意义的,增强学生学习数学的内在动力。)
二、 猜测验证,自主探究
1.公式猜想
师:同学们,前一段时间我们刚掌握了哪些图形的面积计算?
引导学生得出:已学过了三角形、平行四边形的面积计算
师:平行四边形的面积计算公式,我们是怎样推导出来的?三角形的面积计算公式,我们又是怎样推导出来的?
学生回答,教师出示多媒体课件,演示平行四边形与三角形的面积推导过程。
师:我们在推导这两个图形面积计算公式时,有什么共同点。(都是运用转化法,把未知化为已知)
师:这种方法很重要,我们在解决很多问题的时候都是利用已有的知识去解决新问题,对于梯形的面积如何计算,同学们也可大胆地猜想一下,梯形可能转化成哪个我们已学过的图形呢?
生猜想(教师根据学生回答相机写出图形)。
(设计意图:通过对平行四边形与三角形面积计算公式推导过程的回顾,为学生推导梯形面积计算公式作了有效思维策略的铺垫。让学生对梯形如何转化进行猜想,培养了学生的直觉思维和探究意识。)
2.公式探究
师:同学们对梯形转化成什么,都作了自己的大胆猜想,但光有猜想是不够的,只有猜想就是幻想,所以我们还要对自己的猜想进行探索,通过事实来说明你的猜想是合理、正确的。现在同学们就开始对自己的猜想进行探索,这里老师提几个探索要求:
教师出示:探究要求:
(1)把信封袋中的梯形转化成已学过的图形。
(2)认真观察,发现梯形与拼成的图形在面积、边的长度上有什么关系?
(3)尝试从拼成的图形面积计算公式推导梯形面积的计算公式。
学生进行探究,教师进行相机指导。
探究后,学生汇报推导,教师引导得出如下几种推导思路:
思路一:用两个完全一样的梯形拼成一个平行四边形(如下图),得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出梯形面积=(上底+下底)×高÷2
思路二:把梯形剪成两个三个角形(如下图),得出梯形的面积等于两个三角形面积之和,从而推出梯形的面积=上底×高÷2+下底×高÷2
思路三:把梯形剪成一个平行四边形与一个三角形(如下图),梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出梯形的面积=上底×高+(下底-上底)×高÷2。
教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”这个公式更简明易记。
师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?
师:现在同学们翻开课本88-89页,阅读一下课文,并把文中的空填完整。
(设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在这个环节中,教师放手让学生去实践、去探索,学生在探索梯形面积的过程中,不仅掌握了梯形的面积计算公式,理解梯形面积计算公式的由来,更有力地促进了学生思维能力的发展和问题解决策略意识的形成。)
三、 实践运用,体验生活
1.火眼金睛我能辨
(1)梯形面积是平行四边形面积的一半。
(2) 两个完全相同的直角梯形可以拼成一个长方形。
(3)一个梯形的上底是10cm,下底是20cm,高是10cm,它的面积是300平方厘米。
2.生活运用我能行
(1)完成课本89页做一做
(2)师:课前学校留给大家的问题还没有解决,现在我们来解决它。(师再次出示近似梯形的地)要求这块地的面积要知道什么条件?(要知道上底、下底、高各是多少)
教师出示上底16m、下底12m、高2m,学生进行计算。最后得出这块地的面积。
(设计意图:设计形式多样、层次分明、重点突出的习题,一是让学生对新知识起到巩固的作用;二是注重激发学生练习的兴趣,同时解决课始提出的问题,让学生体验到数学价值,增进学生学好数学的信心,从而主动参与学习。)
四、 评价总结,延伸拓展
师:通过学习你有什么收获?是如何学习的,还有什么问题?
(设计意图:让学生回顾学习过程,再一次体验学习经历,这个过程是学生对所学知识进行系统化、条理化的过程,不仅促进学生掌握了知识、领悟了方法,还培养了学生的语言表达能力,归纳概括能力,关注了学生情感的体验。)
五、 作业布置
,1—4。
2.梯形面积计算公式的推导过程除了同学们在课堂上汇报的几种外,还有其它的推导形式,同学们如果有兴趣可以进一步研究。
3.梯形的面积计算公式与平行四边形、三角形、长方形的面积计算公式有着密切的关系,而且这些图形的面积计算公式都可以用梯形的面积计算公式来表示,同学们找找看是怎样的关系。
附板书设计:
梯形面积计算教学设计 篇9:
梯形面积的计算是在学生学会计算平行四边形、三角形面积计算的基础上教学的。教材先复习梯形的有关知识,然后引导学生想,怎样把梯形转化为已学过的图形,从而推导出梯形的面积计算公式。其中理解梯形面积计算公式的推导过程是本节课教学的难点。
下面就从以下几个方面进行剖析:
(一)以旧促新,探究新知
1、出示梯形请学生找出梯形的上底、下底和高,然后请学生想一想:我们在推导平行四边形、三角形面积计算公式的时候,都用到了什么方法?带领学生回顾以前知识,(把一个平行四边形进行割补转化成一个长方形,推导出平行四边形的面积计算公式;把两个完全一样的三角形拼成一个平行四边形推导出三角形的面积计算公式。)使学生明确都用到了转化的方法。然后教师启发:我们能否也用转化的方法来推导梯形面积的计算公式呢?下面我们就来共同研究、探讨。本环节的设计,善于抓住新旧知识的内在联系,数学思想方法的类比迁移,用循序渐进的启发性提问,培养学生的发散思维。促进学生将梯形面积计算公式与已有认知结构中的平行四边形、三角形面积计算公式建立非人为的实质性联�
2、推导梯形的面积计算公式。
在引导学生进行操作时,我先课件显示操作提纲:1、拿出两个完全一样的梯形动手拼一拼。2、你拼成了什么图形?怎样拼的?3、你发现拼成的平行四边形和梯形之间有什么关系?让学生带着教师提出的问题一边思考,一边动手,防止出现学生不知道做什么的现象。然后学生示范拼图,用两个完全一样的梯形拼成一个平行四边形。由于学生操作的两个完全相等的梯形是等腰梯形,因此未出现异常现象,学生都兴奋地说拼成了平行四边形。为了加深学生对书本图示的理解,我故意剪了两个完全相等的任意梯形,结果问题就出现了,一名学生没有按照书本上的拼法,结果自然没有拼成平行四边形,学生都感到惊讶。我见时机成熟,叫学生再打开书本,仔细观察书上的拼法,使学生明确拼的步骤:即先要重合,再向左旋转,最后沿着梯形的一条边向上平移,直至两条底成一条直线,才能拼成。学生这才明白过来。通过动手操作,同学们都明确了两个完全相同的梯形能拼成一个平行四边形。
接下来根据拼成的平行四边形,请学生一边看图一边找关系,先找出平行四边形的底与梯形的底之间的关系,即拼成的平行四边形底是梯形上底和下底之和,再找出梯形的高与拼成的平行四边形的高的关系,即拼成的平行四边形的高是梯形的高,然后得出梯形面积与拼成的平行四边形面积之间的关系,即梯形面积是拼成的平行四边形面积的一半,最后得出梯形的面积计算公式及字母公式。
本环节的设计,从学生实际出发,设计了相应的填空题,使研究的要求清楚,目的明确,有利于学生有效、有序地进行思维。
(二)学以致用。
在例题的教学中,由于有前面平行四边形、三角形面积计算的基础,因此我没有花很多的精力,而是先出示例题,让学生自己尝试解答,充分发挥了学生的主观能动性。在练习的设计中,我也能从学生实际出发,选择学生中有可能出现错误的列式,让学生选择正确答案,从而杜绝错误现象。为了让学有余力的学生能吃得饱,我又布置了一些拓展题,。让学生尝试用不同的方法得出梯形面积的推导公式。(用一个梯形拼一个平行四边形,然后推导梯形面积的计算公式)
总之,本堂课能以全体学生为本,从教学形式和教学方法上有了较大的更新。通过让学生操作、思考、观察、讨论、说理、计算、看书和概括等多种形式,注意了变 "教师讲授"为"研究交流",变"灌输"为"引导",较好地处理了"主体"和"主导"的关系,有利于培养学生学会学习,学会创造的良好素质。
五年级《梯形的面积》教案 篇10:
教学目标:
(1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。
(2)培养学生合作学习的能力。
(3)继续渗透旋转、平移的数学思想。
教学重点:理解并掌握梯形面积公式的计算方法。
教学难点:理解梯形面积公式的推导过程。
教学过程:
一、复习旧知
1.求出下面图形的面积。
2.回忆三角形面积公式推导过程(演示课件:拼摆三角形 下载)
二、设疑引入
教师出示一个梯形和一个三角形(已标出底和高)。这个梯形比三角形的面积大还是小?相差多少呢?要想得到准确地结果该怎么办?
板书课题:梯形面积的计算
三、指导探索
第一部分:梯形面积公式的推导。
1.小组合作推导公式。
教师谈话:利用手里的学具,仿照求三角形面积的方法推导梯形面积的计算公式
提纲:
2.(演示课件:拼摆梯形 下载)
电脑演示转化推导的全过程。
3.由学生自己说明“梯形面积=(上底+下底)×高÷2”的道理。
4.概括总结、归纳公式。
提问:(1)(上底+下底)×高求的是什么?
(2)为什么要除以2?
板书:梯形面积=(上底+下底)×高÷2
第二部分,应用公式计算。
1.出示例1、一条新挖的渠道,横截面是梯形,渠口宽米,渠底宽米,渠深米。它的横截面的面积是多少平方米?
2.提问:已知什么?求什么?怎样解答?
3、列式解答
(+)×÷2
=×÷2
=(平方米)
答:它的横截面的面积是平方米。
四、巩固练习
1、计算下面梯形的面积。
2.动手测量学具(梯形)的相关数据,并计算梯形学具的面积。
3.下面是一座水电站拦河坝的横截面图,求它的面积。
五、质疑总结。
1.师生共同回忆这节课所学习的内容。
提问:求梯形的面积为什么要除以2?
求梯形面积需知哪些条件?
2.引导学生质疑,组织学生解题。
六、板书设计
数学教案计算梯形的面积 篇11:
一、说教材
1、说课内容:九年义务教育六年制第九册第三单元第3小节《梯形面积的计算》。这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。
2、教学目标:
认知目标:使学生理解梯形面积计算公式,能正确地计算梯形面积。
能力目标:通过操作观察比较发展学生的空间观念,学生经历梯形面积公式的探索过程,进一步感受转化的数学思想,进一步培养学生的观察、分析、概括、推理和解决实际问题的能力,
情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
3、教学重、难点:
重点:理解梯形面积计算公式的推导,并能正确运用梯形面积的计算公式进行计算。
难点:运用不同的方法推导出梯形的面积公式。
二、说教法与学法
1、根据几何图形教学的特点,我采用了以下几点教法:
①充分发挥学生的主体性,让学生通过课堂讨论、相互合作、实际操作等方式,自主探索、自主学习,使学生在完成任务的过程中不知不觉实现知识的迁移和融合;
②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。
2、通过本节课的教学,使学生掌握一些基本的学法:
①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;
②让学生学会自主发现问题,分析问题,解决问题的方法。
三、说教学过程
新课程的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师只是学生学习的组织者、引导者与合作者。根据本课教学内容、学生的实际认知水平和新课程理念的指导下,本课的教学设计如下:
(一)复习旧知引出新课
1、回忆已经认识的平面图形。说说平形四边形和三角形面积的计算公式,并回想三角形面积的推导过程。
2、谈话引出课题
关于梯形你们想知道什么?(让学生说说自己的想法)
〈这个环节的设计主要是通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。也就是为梯形面积的推导做好铺垫,并在学习新课之前激发学生的学习兴趣,让学生怀着由好奇引起的理智上的震动进入认知活动方面的探索。〉
(二)讲授新课
1、直接切入主题:
对于梯形的面积你们打算怎样找到它的计算方法?(让学生说说自己的思路——把梯形转化为我们学过的图形。)
〈这一环节的设置意在激活学生思维,为学生提供创新机会,让学生主动参与,培养他们从小树立探寻知识的意识的良好学习习惯,变“要我学”为“我要学”,也为新课的展开起好前奏。〉
2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)
3、研究建议:
①选择喜欢的梯形,按照“转化”的思路来研究。
②小组分工合作,考虑不同的转化方法。
4、自主探究,合作学习
学生小组讨论,动手操作。〈教师可有意识地参加到小组中去合作、辅导〉
5、分小组展示汇报,教师深化点拔。
指名说说自己是怎样做的。(边说边演示其过程)
〈两个完全一样的梯形拼成〉〈沿着高切割、拼摆〉〈沿着一条腰的中线切割、拼摆〉….
(上底+下底)×高÷2(上底+下底)÷2×高(上底+下底)×高÷2……
刚才同学们采用不同的割补、拼摆等方法,将梯形转化成平行四边形、长方形或三角形,发现了它们之间的关系,推导出了不同的面积公式,运用这些公式,我们都可以计算出梯形的面积。只不过,这些公式从形式上看略有不同,我们可以把它们整理成:
梯形的面积=(上底+下底)×高÷2
7、引导学生用字母表示公式:S=(a+b)×h÷2
8、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)
〈这一环节意在让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉
(三)深化巩固
1、学习例1
(1)借助教具演示,理解“横截面”的含义。
(2)弄清渠口、渠底、渠深各是梯形的什么?
(3)学生尝试计算横截面积。
〈巩固新知是课堂教学中不可缺少的一个过程,这一环节是为了将学生的学习积极性再次推向高潮,能更好地运用公式计算梯形面积,从中培养了学生解决简单实际问题的能力。〉
(四)总结,反思体验
回想这节课所学,说说自己有哪些收获?
〈这个环节主要是再次把学习的主动权交给学生,让学生在回忆过程中更清楚地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。〉
(五)课外作业
练习十八第1——3题。
〈本课的作业体现了“课已终,趣犹存”这一特点。通过作业练习教师能从中得到反馈信息,能了解自己的教学效果,以促进教法的改进。〉
五年级《梯形的面积》教案 篇12:
梯形的面积教学片段设计——北师大版第九册第二单元
教学重点:学生运用“转化”的思想推导梯形面积公式
教学难点:运用不同方法推导出梯形的面积公式
教具准备:梯形学具(两个完全一样的直角梯形、等腰梯形、任意梯形)
电脑课件
教学过程:
一、设置情境 提出问题
1、师:(板书课题)我们学过的平行四边形、三角形的面积与它的底和高有关,你觉得今天研究的梯形的面积可能和它的什么有关系?
生:可能与它的上底,下底,高有关(师板书:上底,下底,高)
师:到底是不是这样,下面我们就一起来研究一下。回忆一下我们在研究三角形面积时是怎样推导的?
生: 将两个完全一样的三角形拼成平行四边形;也可以用割补的方法把三角形转化成我们以前学过的基本图形,如:正方形、长方形或平行四边形,再用面积公式计算推导出公式。
小结过渡:我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形,可以怎样转化呢?
二、小组合作,自主探索:
1、动手实践操作
师:下面我们就来实践操作一下吧,大家看见桌子上的袋子了吗?想不想知道里面装的是什么?
生:想!
师:各组打开看看吧!
生:是各种颜色的梯形。
师:哪组同学看出老师给你准备的梯形有什么特点?
生:各种梯形都有,而且每种梯形都是一模一样的两个,并且是同一个颜色。
师:我们先看看实践提纲吧。(课件出示实践提纲)
生:默读提纲,开始小组合作探究。
师:巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。
2、课件直观演示
师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?
生:将一个梯形旋转180度后再平移,拼成平行四边形。
师:那怎样求梯形的面积呢?
生:要先求平行四边形的面积——底×高,再除以2。
师:平行四边形的底和高图中标有吗?
生:平行四边形的底就是梯形的上底和下底的和,高就是梯形的高。(师用课件配合演示)
师:追问为什么要除以2?
生:因为我们用的是两个一模一样的梯形拼摆的,求一个梯形的面积就可以用平行四边形的面积除以二。(师用课件配合演示)
师:大家是这样拼的吗?下面谁来完成一下我们的实践提纲。(课件出示,生逐一汇报)
实践提纲:
(1)用两个完全一样的梯形可以拼成一个________________形。
(2)这个平行四边形的底等于____________________,高等于___________________.
(3)每个梯形的面积等于拼成的平行四边形面积的____________________.
(4)梯形的面积=____________________________.
总结:所以,梯形的面积公式我们就可以写成……(板书:梯形的面积=)谁到前面来将公式补充完整?(生补充板书)谁能用字母表示一下?(生板演)
《梯形的面积》教学片断评课稿
辽宁省盘锦市辽油迎宾小学 王辉
尊敬的各位领导,老师大家好!
下面我就孟老师执教的《梯形的面积》这一教学片断,从以下几个方面作以简单的评述。
一、从教学目标上看,本节课突出了一个“明”字,既知识和技能,数学能力,情感与态度。目标明确具体,关注了学生的全面发展,且在课堂教学中能紧紧围绕制定的目标展开教学,符合新课程标准中的教学理念。
二、从教学内容上看,本课抓住了一个“准”字,既教学重点,难点确立准确,教师在教材处理和教法选择上都突出了重点,使学生会运用“转化”的数学思想来推导梯形的面积公式,突破了难点,使学生会运用不同的方法来推导和验证梯形的面积公式。
三、从教学程序和教学思路上,本节课体现了一个“清”字,整个课堂教学结构设计严谨,环环相扣,过渡自然,时间分配合理,密度适中,效率高。设置情境,导入新课-------小组合作,自主探究-------发散拓展,验证结论。整个教学思路清晰。
本节课的教学中,孟老师注重渗透新课程理念,大胆开放自主探索空间,实现数学学习的“再创造”。具体体现在以下三个方面的课堂教学过程中:
(一)、创设情境,架起新知与旧知的桥梁。
《标准》指出:“数学教学,要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握 基本的数学知识和技能,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,以及学好数学的愿望。”根据这一理念,教者在新课导入时,教者借助知识的迁移引发学生的猜想:“梯形的面积与它的什么有关系?”同时教师又从学生已有的知识出发,向学生渗透数学转化思想,使新知识转化为旧知,新知、旧知有机的融为一体,学生把新知纳入已有的知识结构中去。不仅架起了新知与旧知的桥梁,拉近了数学与生活的距离,更让学生对数学产生了亲近感,激发了他们主动的探索欲望。
(二)、强化动手实践,拓宽探究空间。
《标准》指出:“学生的学习过程应是一个主动建构知识的过程,必须在学生认知发展水平和已有知识经验的基础上,为学生提供从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握数学知识,动手实践、自主探索与合作交流是学生学习数学的重要方式。”根据这一理念,老师在教学中注重为学生自主探究提供充分的素材、时间和空间。充分让学生动手实践——用学具剪剪拼拼,进行了自主探索,并在形式上响应地组织了小组合作交流。体现了探究性教学的特点。
(三)、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
(四)、从教法和学法上看,本节课呈现了一个“活”字,教学方法的“活”,主要体现在“活动探究”“小组合作”“猜想验证”等多种教学方法,使学生在数学学习活动中,主动参与,自主探索,合作交流,引导学生体会数学知识间的内在联系,感受数学的整体性,不断积累解决问题的策略,培养学生的创新意识和实践能力。
学生学法的“活”主要体现在与教法相结合,在教师的指导下学生的学习积极性很高,兴趣浓,主动参与意识强,合作,讨论交流热烈。
(五)、从教学手段上看,运用现代信息技术,实现了学生的学习方式、教师的教学方式和师生互动方式的变革,实现了现代信息技术与学科课程的整合。
《课标》中指出,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐于并有更多的精力投入到现实的探索性的数学活动中去,本节课的设计充分发挥了多媒体课件的演示功能,把多媒体课件和学具有机结合,这不仅帮助学生清楚地理解、掌握用拼摆法,割补法推导梯形的面积公式,更重要的是向学生渗透数学的“转化”思想,拓展了学生的思维,极大地调动了学生参与的积极性,有效地突破了教学的重、难点,完成了本课的教学目标。
(六)、从教学效果上看,得到了一个“好”字。
即课堂教学效果高,学生思维活跃,人人主动参与,即面向全体学生,又注重个别差异,使不同的学生在教学上得到不同的发展。
综上所述,本课体现了学生是数学学习的主人,教师是数学学习的组织者,引导者与合作者,即以教师为主导,学生为主体的教学理念,体现了动手操作、合作交流、自主探究的探究性教学特点,培养了学生的创新意识和实践能力,圆满地完成了本节课的教学任务,
谢谢大家!
《梯形的面积》教案 篇13:
教学目标:
1. 使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。
2. 使学生理解梯形面积的计算方法,能正确地计算梯形的面积。
3. 培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。
教学重点:
理解梯形面积的计算方法,正确计算梯形的面积。
教学难点:
梯形面积计算方法的推导过程。
教学准备:
多媒体课件
教学过程:
一. 复习引入。
1. 同学们已经掌握了平行四边形和三角形面积的计算。现在我就想考考同学到底掌握得怎么样?谁能够快速准确地说出这些图形的面积呢?
2. 计算下面图形的面积。(单位:厘米)
3. 我们先看第一个图形,它的面积是多少?(300平方厘米)
你是怎样计算的?(2015=300)
你的根据是什么?(平行四边形的面积=底高)
你能说你的这个方法是怎么得出来的吗?(沿着平行四边形的一条高剪开,再把它从一边移动另一边,这样就拼成了一个长方形。)
4. 那么第二个图形的面积是多少呢?(36平方厘米)
你是怎样计算的?(1262=36)
你的根据是什么?(三角形的面积=底高2)
你能说你的这个方法是怎么得出来的吗?(将一个一模一样的三角形沿一个顶点旋转180o,再沿边平移上去,这样就拼成了一个平行四边形。)
5. 出示转化过程并小结:我们是把平行四边形、三角形分别转化成长方形、平行四边形这些我们已经学过的图形来计算出它们的面积的!
二. 新课传授。
(一)面积计算方法的推导过程。
1. 今天我还带来了另外一个图形,谁能告诉我这是什么图形?(出示梯形)
你怎么知道它是梯形?(只有一组对边平行)
2. 提出质疑揭示课题:今天我们就一起来研究梯形面积的计算(板书),我们是否可以仿照平行四边形和三角形的方法,把梯形也转化成已学过的图形来计算它的面积呢?请同学们拿出准备好的梯形和剪刀,看看你能不能通过剪一剪、拼一拼把梯形也转化成我们已经学过的图形呢?
3. 学生动手操作,分别展示成果。
(1)请学生说出自己的想法和拼法。(将一个一模一样的梯形沿一个顶点旋转180o,再沿腰平移上去,这样就拼成了一个平行四边形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高没有变,面积是梯形的两倍。)
(2)请学生说出自己的想法和拼法。(将梯形上底和下底对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180o,这样就拼成了一个平行四边形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高是原来梯形面积的一半,面积没有变。)
(3)请学生说出自己的想法和拼法。(沿梯形一腰中点和对角顶点对折,再折线剪开,将上面的一半沿腰上的中点旋转180o,这样就拼成了一个三角形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的三角形的底是原来梯形的上底与下底的和,高是没有变,面积也没有变。)
4. 我们用很多方法计算出了梯形的面积,但是在实际生活中,有许多东西象钢板等等是不能这样剪开来拼拼的,所以我们就需要知道计算梯形的面积规律。请同学以小组的形式讨论一下,你能从你的方法中得出什么计算的规律吗?
5. 你是怎么得出这个规律的?
6. 揭示规律并板书:梯形面积=(上底+下底)高2
你们能不能告诉我如果我要求一个梯形的面积要知道写什么条件呢?(上底、下底、高)
现在我用s表示梯形的面积,分别用a、b、h表示上底、下底和高,你能用这些字母表示梯形面积的计算方法吗?(s=(a+b)h2)
7. 经过刚才的学习,我们了解了梯形面积计算的一个方法,那么我想请同学们帮我解决这样一个问题(出示例1):一个零件,横截面是梯形。上底是14厘米,下底是26厘米,高是8厘米。它的横截面的面积是多少平方厘米?
三. 巩固练习。
1. 找出梯形的上底、下底和高并计算面积。(单位:厘米)
2. 量出自己准备的梯形的上底、下底、高,求出它的面积。
从这个梯形上剪下一个最大的三角形,怎么剪?剩下的图形面积是多少?为什么?
四、课堂总结。
1. 这节课你学到了什么?
2. 你还有什么样的问题吗?
《梯形的面积》教案 篇14:
教学内容:国标本苏教版小学数学五(上)p19例6,p20试一试、练一练教学目标:1、使学生经历“猜想、验证、发现”的科学研究过程,探索并发现梯形面积的计算方法,能正确计算梯形的面积,并应用公式解决相关的实际问题。2、培养学生观察、推理、归纳能力,体会转化思想的价值。3、让学生进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。教学重点、难点:探索并掌握梯形的面积计算方法。教学准备:教师准备多媒体课件一套,学生剪下6个梯形。教学过程:一、认知准备:知识、策略,双管齐下谈话:同学们,前面我们已经学习了哪些图形的面积计算?我们是怎样找到它们的计算方法的?用一个词概括就是……(转化)出示梯形图,提问:这是什么图形? 关于梯形,你已经知道了些什么? 那么,关于梯形,你还想知道些什么?提问:是啊,梯形的面积该怎样计算呢?你有办法来找出梯形面积的计算方法吗?同桌商量一下。(板书课题:梯形的面积)组织班内交流,根据学生回答相机板书。( 板书: 梯形 转化成 旧图形 ?)[设计意图:梯形的面积是在平行四边形和三角形面积之后教学的,因此,“迁移”是本课设计的核心。课始从知识和策略两方面为学生迁移旧知、探索新知作好铺垫:其一、回忆梯形的相关知识;其二、回忆两种图形的面积公式推导过程并适当提炼“转化”思想。这样的准备,紧扣新知,直指要害,为学生留下了广阔的探索空间,简洁而有效。]二、探索公式:猜想、验证、发现1、动手操作,尝试转化提问:你们是怎么想到用“转化”的方法来寻找梯形的面积呢?师:你们真会动脑筋,能根据前面的学习方法提出这样的猜想(板书:猜想),可这个想法能实现吗?还得怎么办?(板书:验证)小组活动:挑选梯形尝试转化。交流,演示,多媒体出示拼成的三种情况。明确:任何两个一样的梯形都能拼成一个平行四边形(板书),猜想得到证实。2、讨论关系师:仔细观察一下,拼成的平行四边形与每个梯形有怎样的关系?出示讨论题,同桌商量,交流汇报,最后同桌再互相说一说。[设计意图:学生之前已亲历了平行四边形和三角形面积公式的探索过程,对“转化”思想在推导平面图形面积公式中的作用已有了较深的感受,也积累了一些转化的经验(“剪移拼”和“转移拼”)和观察的经验(从底、高、面积三方面找关系)。因此,今天的“转化梯形”和“寻找关系”早已成了学生“跳一跳可以摘到的果子”!放手让学生自主解决,正是尊重学生数学现实的务实之举,如此创设出的较大探索空间亦有利于激发学生的创造性。]3、应用关系,体验方法在3个拼成平行四边形中的梯形上标出上底、下底、高的数据。师:如果知道了梯形的上底、下底、高,你能利用刚才发现的关系计算出这个梯形的面积吗?学生任选一个梯形独立求出它的面积。交流汇报:(6+10)×4÷2(3+7)×3÷2(3+6)×6÷2谈话:老师发现同学们求梯形面积用的方法竟然完全一样!谁来告诉我,你们这部分算的是什么啊?(划出(6+10)) 再乘上4呢?提问:我明白了,这里算的是拼成平行四边形的面积(板书) 那为什么还要除以2呀?4、想象延伸,发现方法出示独立的梯形(标有数据)提问:你能求出这个梯形的面积吗?学生在草稿本上写下算式。提问:(3+5)×4 算的是什么? 你能想象出拼成的平行四边形的样子吗?用手书空画一画。 为什么要除以2?归纳:现在你知道该怎样计算梯形的面积了吗?根据学生回答板书: 发现 (上底+下底)×高÷2[设计意图:一般的教学,在找出“拼成平行四边形和梯形的关系”后,就利用这3条关系通过适当的板书“顺理成章”地推导梯形的面积公式了。但事实是,这看似“顺理成章”的几句推导之词,其中却是浓缩了一系列的逻辑推理,甚至还融合了 “等量代换”的思想。因此,直接利用关系推导公式对学生来说是有相当的思维难度的,课后我对部分学生的调查也证实了这一点,很多学生感觉“晕晕乎乎”就得出了公式,对推理的过程仅停留在几句“顺口溜”的字面上,真正能说清楚地没几个。那么,该如何才能让学生真正体悟到公式得出过程呢?我增设了“计算”一环:让学生观察拼合图,利用发现的关系计算拼成平行四边形中梯形的面积。这一计算面积的过程能促使学生主动的应用关系寻求计算方法,加深对3条关系的理解;同时,计算的过程其实正是原来抽象推理的外显和物化,这样通过计算这一形式就把纯推理巧妙地加以直观化,给学生理解公式架起了一座思维的桥梁。最后通过适当的说理、想象、归纳,梯形面积公式的得出就“瓜熟蒂落”了。]5、回顾过程,感受策略师:同学们,经过大家共同的努力,我们终于找到了梯形面积的计算方法,就是(生齐说)。我们再一起回顾一下刚才的探索之旅:根据平行四边形和三角形的面积方法的寻找过程,我们大胆的猜测:…… 三、应用公式:紧扣主线,不拘一格,技能与发散并重1、直接应用,熟练公式学生独立完成“练一练”第2题。2、活用公式,体会梯形公式的实质(1)梯形的上下底的和是12厘米,高是4厘米,求它的面积。(2)“练一练”第1题3、应用公式解决生活中的实际问题完成“试一试”。 四、全课总结师:今天你有什么收获? 五、拓展延伸介绍梯形通过剪拼转化成三角形的方法,如下图。[板书设计]梯形的面积猜想 梯形 转化成 旧图形 ?验证 任何两个完全一样的梯形都能拼成平行四边形 拼成平行四边形面积 ÷2 (6+10)×4 ÷2 (3+7)×3 ÷2 (3+6)×6 ÷2发现 (上底+下底)×高 ÷2
小学五年级上册数学《梯形面积的计算》教案 篇15:
教学思路:
“梯形面积的计算”是在学生已经熟练掌握了长方形、正方形,尤其是平行四边形、三角形面积计算,和梯形的认识的基础上学习的一个“几何求积”的数学问题。由于在上述学习中,学生已通过操作、实验等积累了探索平面图形面积计算公式的基本方法和策略(剪、移、转、拼等)并初步领悟了“新旧转化”的数学思想方法,都为学生自主研究、探索“梯形的面积计算”创造必要的条件,打下了良好的基础。基于以上认识,我在导学梯形的面积公式时,并没有沿袭以往的教学思路,而是立足与学生已有的数学现实与经验,
教学目标:
1、引导学生主动参与探索,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。
2、结合学习过程,培养学生观察、操作、比较、推理等逻辑思维能力和初步的假设、试验和验证等科学探究能力。
3、进一步培养学生的空间观念,不断发展学生的空间想象力,培养学生的实践能力和创新意识,体验数学再创造的乐趣,并使不同的学生获得个性化的发展。
教学重、难点:运用转化思想推导梯形面积的计算公式。
教具、学具准备:一般梯形两个,两个完全一样的梯形,剪刀等。
教学过程:
一、自由操作联想,作好新课孕伏。
师:对于梯形,你们已经知道了什么?(可让学生自由发表)利用你手中的梯形,动手折折、剪剪、拼拼,还能发现些什么?(学生独立操作,在此基础上,在同桌或小组内交流自己的发现)
生1:我发现任何梯形都可以分成两个三角形;
生2:我们发现两个完全一样的梯形可以象三角形那样,通过重叠、旋转、平移,转化成一个平行四边形的;
生3:我们发现将一个梯形沿着它的两条高剪开,分成了两个三角形和一个长方形;
生4:我们发现梯形可分成一个三角形和一个平行四边形;
生5:还可以将梯形先剪下一个小三角形,再将剪下的小三角形通过旋转、平移的方法和剩下的图形拼成一个大三角形。
生6:我 (图略)
生7:在梯形的下面剪去两个小直角三角形,拼到上面,可以拼成一个长方形;
生8:将梯形上下对折,沿折痕剪开后所得的两个小梯形也能拼成一个平行四边形
……
师:善于观察、勇于实践,才给同学们带来如此丰富的发现,真了不得!
[点评:引导自由操作,有利于在宽松环境中激活原有数学经验,为随后有目的的尝试、实验和验证做好铺垫。]
二、“假设——验证——交流”,体验数学再创造乐趣
1、假设
师:请大家再想一想,这些方法都有一个共同之处,你看出来了吗?
生:都是将梯形转化成了我们已经学过的图形。
师:同学们将转化后的新的图形与原来的梯形进行比较,看看它们的面积有什么关系?为什么?你能推导出梯形面积的计算公式吗?谈谈你的来推导?
生2:可不可以象三角形那样,将两个完全一样的梯形拼成一个大平行四边形,再进行推导?
……
[点评:交流对问题的初步设想是准确把握学生已有数学现实的关键,这对教师引导学生进行随后的学习起着关键作用]
2、验证:
师:作出的假设是否正确,关键在于能不能经得住实验的验证。请大家借助手头的材料,小组互相合作,大胆试试看,并将结果记录下来。
(学生独立或合作尝试转化,教师深入倾听,对有困难学生进行必要的提示和启发。)
[点评:对数学材料实现“再创造”,不仅需要学生的独立思考,同时也需要组员间的相互启发和教师的及时点拨与引导。]
3、汇报、交流、评价:
师:不少同学已经成功对自己的假设进行了验证,请哪个小组先来展示你们验证的结果和方法?(学生借助实物投影展示各自的方法和结论)
生1:我们是将两个完全一样的梯形转化为一个平行四边形的,这个平行四边形的底是梯形上下底的和,高就是梯形的高,而梯形的面积只有平行四边形面积的一半。
因为:平行四边形的面积=底×高,所以:梯形的面积=(上底+下底)×高÷2。
(掌声)教师表扬。
生2:我们组将梯形分成了两个三角形。因为:小三角形的面积=上底×高÷2,大三角形的面积=下底×高÷2,所以:梯形的面积=上底×高÷2+下底×高÷2 = (上底+下底)×高÷2。
生3:我们小组认为:将梯形上下对折,沿折痕剪开后所得的两个小梯形也能拼成一个平行四边形
这个梯形的底就是梯形的上下底的和,高就是梯形的高的一半,因为:平行四边形的面积=底×高,所以:梯形的面积=(上底+下底)×(高÷2)。[更多精彩教学,尽在天下教育网!]
生4:我们小组沿着梯形的两条高,将梯形分成了一个长方形和两个三角形,长方形的面积可以求出,但三角形的面积无法求出,因为三角形的底不知道。
生5:我认为可以求出,但不知是否正确?
师:说说看,说错了也没问题。
生5继续:单独求其中一个三角形的面积比较困难,能不能将这两个三角形合并成一个大的三角形呢?因为它们都是直角三角形,而且高又相等。
师:你很爱动脑筋,想法也很好,请同学们按照这位同学的思路去剪一剪,拼一拼,看看三角形的底与梯形有没有关系?
生6:我发现了,这个三角形的底应该等于梯形的下底与上底的差。这样,长方形的面积为“上底×高”,两个三角形的面积为“(下底-上底)×高÷2”,合起来再化简即得“梯形的面积﹦(上底+下底)×高÷2”。
生7:我们小组将梯形右下方的小三角形剪下,再翻转上去,拼成一个平行四边形。平行四边形的底相当于梯形上下底和的一半,平行四边形的高相当于梯形的高。所以“梯形的面积=(上底+下底)÷2×高”。
……
师:现在我们来总结一下,通过我们刚才的观察,比较,那么在这些方法中,你最欣赏师:会用字母表示吗?
生:s=(a+b)h÷2
师:说一说各字母的意义。
[点评:通过动手操作,大胆实践,探索出多种方法来推导梯形面积的计算公式,引导学生及时交流,展示个性化的研究思路与成果,整个引导过程都充分发挥了学生的主体作用,使学生真正经历了“操作、观察、总结”的过程,经历了一个数学再创造的过程,既品尝了成功的体验,又激发了学生的实践欲望和创新能力。]
三、在实践中拓展、延伸
1、生尝试练习,帮助理解“横截面”的意义。
2、说一说计算梯形的面积应注意什么?
3、想一想,算一算:
出示圆木图,求圆木的根树。
4、计算:1+2+3+4+5+6+7+8+9= (想一想,怎样算比较简便)
[点评:有层次、有坡度、有趣味的练习,既能巩固所学的新知,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生感到数学是有用的,为培养学生的应用意识起到了较好的促进作用。]
四、全课小结:
1、通过这节课的学习,每个同学都有很大收获,谈谈你的收获。
2、还有什么不懂的吗?
五、作业:(略)
教后反思:
1、探索新型情感性课堂教学,还学生的主体地位。
新的《数学课程标准》多处强调:“学生是数学学习的主人”,“数学教学,要紧密联系学生的生活环境,从学生的生活经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。” 本课教学中尊重每一位学生,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识和方法解决问题。《梯形面积的计算》一个,从课开始的自由操作联想,到公式推导的全过程,到公式的应用,自始至终都能将学生放到主体的地位上。通过学生的实验、操作、交流,让学生构建梯形与长方形、平行四边形、三角形之间的联系,从而正确的推导出梯形面积的计算公式,并灵活的应用于生活实际。
五年级《梯形的面积》教案 篇16:
教学目标:
1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。
3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:
理解、掌握梯形面积的计算公式。
教学难点:
理解梯形面积公式的推导过程。
教学课时:
1课时
教学准备:
1. 学生准备两个完全一样的梯形。
2. 老师准备多媒体课件。
教学过程:
1.导入新课
(1)投影出示一个三角形,提问:
这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。
(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
2.新课展开
第一层次,推导公式
(1)操作学具
①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。
(2)观察思考
①教师提出问题引导学生观察。
a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,深化认识。
(1)启发学生回忆平行四边形面积公式的推导方法。
①提问:想一想平行四边形面积公式是怎样推导得到的?
②学生回答,教师在展示台再现平行四边形面积公式的推导方法。
(2)引导操作。
①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?
②学生动手操作、探究、讨论,教师作适当指导。
(3)信息反馈,扩展思路。
说一说你是怎样割补的?教师展示各种割补方法。
第三层次,公式应用。
(1)出示课本第89页的例题,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。
3.巩固练习
(1)完成练习十七第1、2和3题。
(2)讨论完成练习十七第4和6题。
4.全课小结
这节课你们有什么收获?你们还想了解什么?学生列举活动中的种种收获、困惑。教师给予引导、肯定、鼓励和指正。
课后反思:
!《梯形面积的计算》教学反思
在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:
一、提出问题,激发兴趣
我先运用投影出示了一个三角形,让学生回顾三角形的面积计算方法,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?
学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。
二、注重合作,促进交流
学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。
这时,我提醒他们:“小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!”
学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。
三、思维拓展,能力提升
新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?
开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:“你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?”学生兴趣盎然。很快就表示出两个三角形的面积,即:上底×高÷2、下底×高÷2,于是引导学生把两个算式加起来,从而推导出梯形面积公式
很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。
由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。
五年级《梯形的面积》教案 篇17:
教学目标:
1、使学生发现梯形面积公式的推导方法,理解公式的形成,并能运用公式解决简单的实际问题,发展实践能力。
2、通过对面积公式的探索,培养学生观察比较、动手操作的能力,发展空间观念。
3、结合教学内容,渗透“转化”的教学,培养学生初步的创新思维能力。
教学重点:
发现、理解和应用梯形面积计算公式。
教学难点:
理解公式的推导过程
教具准备:
计算机软、硬件一套;两个完全一样的直角梯形拼成的长方形;两个完全一样的梯形拼成的平行四边形;标有上、下底和高及数据的一般梯形、等腰梯形、直角梯形各一个。
学具准备:
每个学生准备两个完全一样的一般梯形、直角梯形、等腰梯形和剪刀。
教学过程:
一、迁移诱导,激发参与兴趣
1、启发学生回忆三角形的面积推导公式。
2、板书课题,引入新课。
二、实验操作,引导参与探究
1、转化
学生分成四人小组进行学习。
独立拿出准备好的各种梯形,拼成学过的图形。
学生拼摆,教师对不同层次的学生,及时给予点拨和鼓励。
2、观察
学生分组,结合拼成的平行四边形观察、讨论。教师巡视,注意点拨。
板书如下:梯形面积 拼成的平行四边形面积的一半
平行四边形的底 梯形是上底+下底
平行四边形的高 梯形的高
3、推导
学生分组讨论,教师巡视,注意点拨。
学生反馈,教师注意用规范的语言进行调控。
板书如下:
平行四边形面积= 底 × 高
梯 形 的 面 积=(上底+下底)×高÷2
S=(a+b)×h÷2
提问:计算梯形的面积为什么除以2?
三、反馈调节,巩固参与成果
1、引导实际应用,巩固梯形面积公式
2、分层训练,培养能力
3、发展提高,深化知识