首页 > 学习资料 > 小学教案 >

五年级数学《梯形面积的计算》教案【汇编4篇】

网友发表时间 79835

发表时间

【序言】由阿拉题库最美丽的网友为您整理分享的“五年级数学《梯形面积的计算》教案【汇编4篇】”学习资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

梯形的面积教案【第一篇】

教学内容:梯形面积的计算

教学目标:

1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。

2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。

3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。

教学重点、难点和关键:

教学重点:梯形面积的计算公式。教学难点:梯形面积计算公式的推导过程。教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。

教具、学具准备:

教师准备多媒体课件、学生备用梯形硬纸片。

教学过程:

一、复习引入:

1、复习:

同学们会计算哪些图形的面积?

计算下列图形的面积:多媒体出示。

2、引入:

屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计算方法。

3、回忆旧知

我们在学习平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)

我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)

二、探索解决问题办法,并尝试转化

1、引导学生提出解决问题方案

我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?

你准备用什么方法把梯形转化为我们学过的图形?

2、学生尝试转化

刚才同学提出了用割补的方法、用拼摆的'方法。那么,怎样来割补呢?

学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。

那么,用拼摆的方法呢,你准备怎样来拼?

学生上台演示。

3、学生操作、实施转化

学生以四人小组为单位,拼摆梯形。

请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?

谁来说一说,你是怎样拼的?多媒体课件演示。

三、观察图形,推导公式:

1、观察

同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的梯形有什么关系?

它们的底、高和面积,大小怎样呢?小组讨论。

学生总结汇报后多媒体课件演示。

2、计算梯形面积

平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?

算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?

计算面积,学生口述,教师板书。

3、推导梯形面积公式

算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?

用字母表示梯形面积公式

阅读教材,加深理解

四、应用公式计算梯形面积

1、基本练习:

计算下面梯形面积

2、教学例题

出示例题并理解题意。

计算面积,一人板演,全班齐练。

3、判断题

4、抢答题

5、测量并计算

五、总结课堂

小学五年级上册数学《梯形面积的计算》教案【第二篇】

教学内容:国标本苏教版小学数学五(上)p19例6,p20试一试、练一练教学目标:1、使学生经历“猜想、验证、发现”的科学研究过程,探索并发现梯形面积的计算方法,能正确计算梯形的面积,并应用公式解决相关的实际问题。2、培养学生观察、推理、归纳能力,体会转化思想的价值。3、让学生进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。教学重点、难点:探索并掌握梯形的面积计算方法。教学准备:教师准备多媒体课件一套,学生剪下6个梯形。教学过程:一、认知准备:知识、策略,双管齐下谈话:同学们,前面我们已经学习了哪些图形的面积计算?我们是怎样找到它们的计算方法的?用一个词概括就是……(转化)出示梯形图,提问:这是什么图形? 关于梯形,你已经知道了些什么? 那么,关于梯形,你还想知道些什么?提问:是啊,梯形的面积该怎样计算呢?你有办法来找出梯形面积的计算方法吗?同桌商量一下。(板书课题:梯形的面积)组织班内交流,根据学生回答相机板书。( 板书: 梯形 转化成 旧图形 ?)[设计意图:梯形的面积是在平行四边形和三角形面积之后教学的,因此,“迁移”是本课设计的核心。课始从知识和策略两方面为学生迁移旧知、探索新知作好铺垫:其一、回忆梯形的相关知识;其二、回忆两种图形的面积公式推导过程并适当提炼“转化”思想。这样的准备,紧扣新知,直指要害,为学生留下了广阔的探索空间,简洁而有效。]二、探索公式:猜想、验证、发现1、动手操作,尝试转化提问:你们是怎么想到用“转化”的方法来寻找梯形的面积呢?师:你们真会动脑筋,能根据前面的学习方法提出这样的猜想(板书:猜想),可这个想法能实现吗?还得怎么办?(板书:验证)小组活动:挑选梯形尝试转化。交流,演示,多媒体出示拼成的三种情况。明确:任何两个一样的梯形都能拼成一个平行四边形(板书),猜想得到证实。2、讨论关系师:仔细观察一下,拼成的平行四边形与每个梯形有怎样的关系?出示讨论题,同桌商量,交流汇报,最后同桌再互相说一说。[设计意图:学生之前已亲历了平行四边形和三角形面积公式的探索过程,对“转化”思想在推导平面图形面积公式中的作用已有了较深的感受,也积累了一些转化的经验(“剪移拼”和“转移拼”)和观察的经验(从底、高、面积三方面找关系)。因此,今天的“转化梯形”和“寻找关系”早已成了学生“跳一跳可以摘到的果子”!放手让学生自主解决,正是尊重学生数学现实的务实之举,如此创设出的较大探索空间亦有利于激发学生的创造性。]3、应用关系,体验方法在3个拼成平行四边形中的梯形上标出上底、下底、高的数据。师:如果知道了梯形的上底、下底、高,你能利用刚才发现的关系计算出这个梯形的面积吗?学生任选一个梯形独立求出它的面积。交流汇报:(6+10)×4÷2(3+7)×3÷2(3+6)×6÷2谈话:老师发现同学们求梯形面积用的方法竟然完全一样!谁来告诉我,你们这部分算的是什么啊?(划出(6+10)) 再乘上4呢?提问:我明白了,这里算的是拼成平行四边形的面积(板书) 那为什么还要除以2呀?4、想象延伸,发现方法出示独立的梯形(标有数据)提问:你能求出这个梯形的面积吗?学生在草稿本上写下算式。提问:(3+5)×4 算的是什么? 你能想象出拼成的平行四边形的样子吗?用手书空画一画。 为什么要除以2?归纳:现在你知道该怎样计算梯形的面积了吗?根据学生回答板书: 发现 (上底+下底)×高÷2[设计意图:一般的教学,在找出“拼成平行四边形和梯形的关系”后,就利用这3条关系通过适当的板书“顺理成章”地推导梯形的面积公式了。但事实是,这看似“顺理成章”的几句推导之词,其中却是浓缩了一系列的逻辑推理,甚至还融合了 “等量代换”的思想。因此,直接利用关系推导公式对学生来说是有相当的思维难度的,课后我对部分学生的调查也证实了这一点,很多学生感觉“晕晕乎乎”就得出了公式,对推理的过程仅停留在几句“顺口溜”的字面上,真正能说清楚地没几个。那么,该如何才能让学生真正体悟到公式得出过程呢?我增设了“计算”一环:让学生观察拼合图,利用发现的关系计算拼成平行四边形中梯形的面积。这一计算面积的过程能促使学生主动的应用关系寻求计算方法,加深对3条关系的理解;同时,计算的过程其实正是原来抽象推理的外显和物化,这样通过计算这一形式就把纯推理巧妙地加以直观化,给学生理解公式架起了一座思维的桥梁。最后通过适当的说理、想象、归纳,梯形面积公式的得出就“瓜熟蒂落”了。]5、回顾过程,感受策略师:同学们,经过大家共同的努力,我们终于找到了梯形面积的计算方法,就是(生齐说)。我们再一起回顾一下刚才的探索之旅:根据平行四边形和三角形的面积方法的寻找过程,我们大胆的猜测:…… 三、应用公式:紧扣主线,不拘一格,技能与发散并重1、直接应用,熟练公式学生独立完成“练一练”第2题。2、活用公式,体会梯形公式的实质(1)梯形的上下底的和是12厘米,高是4厘米,求它的面积。(2)“练一练”第1题3、应用公式解决生活中的实际问题完成“试一试”。 四、全课总结师:今天你有什么收获? 五、拓展延伸介绍梯形通过剪拼转化成三角形的方法,如下图。[板书设计]梯形的面积猜想 梯形 转化成 旧图形 ?验证 任何两个完全一样的梯形都能拼成平行四边形 拼成平行四边形面积 ÷2 (6+10)×4 ÷2 (3+7)×3 ÷2 (3+6)×6 ÷2发现 (上底+下底)×高 ÷2

五年级《梯形的面积》教案【第三篇】

教学目的:

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教具准备:

1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。

2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。

3、学生将教科书第147页上面的两个梯形剪下来。

教学过程:

一、复习。

出示三角形图。

问:三角形的面积怎样求?

这个三角形的面积是多少?

三角形的面积计算公式我们是怎样推导出来的?

怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)

师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)

二、新课。

1.教学梯形面积的计算公式。

出示教科书第80页上面的梯形图。

问:这个图形是什么形?(梯形)

师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。

问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)

教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。

问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)

两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)

平行四边形的底等于什么?(等于梯形的上底、下底之和)

平行四边形的高和梯形的高有什么关系?(相等)

平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)

一个梯形的面积怎样算?(提示学生回答,

教师板书:(3+5)×4÷2

=8×4÷2

=32÷2

=16(平方厘米)

师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)

问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)

平行四边形的高是什么?(就是梯形的高)

板书:

平行四边形的面积=(上底+下底)×高

梯形的面积=(上底+下底)×高÷2

如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:

S=(a+b)×h÷2

问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)

2.应用出的梯形面积公式计算梯形面积。

(1)出示第81页例题。

指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。

问:这个梯形的上底是多少?下底呢?

这个梯形的高是多少?

梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)

(2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。

三、巩固练习。

练习十九第1、2题。

四、作业。

练习十九第3、4题。

五年级《梯形的面积》教案【第四篇】

教学目标:

1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题

2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。

教学重点:

掌握梯形面积的计算公式,并会用公式解决实际问题。

教学难点:

理解梯形面积公式推导方法的多样化,体会转化的思想。

考点分析:

会用梯形面积公式解决实际问题。

教学方法:

游戏引入——新知讲授——巩固总结——练习提高

教学用具:

课件、多组两个完全相同的梯形。

教学过程:

一、提出问题(课件出示教材第95页的主题图)。

教师:同学们在图中发现了什么?

教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

二、通过旧知迁移引出新课。

教师:同学们还记得平行四边形和三角形的面积怎么求吗?

1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。

2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法

3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?

三、揭示课题;

根据学生的回答,引出新课,梯形的面积。

板书课题--梯形的面积。

四、新知探究

1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。

2、请同学们打开学具袋,看看里面的梯形有什么特点?

生:各种梯形,每种两个,每种梯形颜色一样。

教师提出要求

①选择自己喜欢的梯形把它拼成我们学过的图形

②想一想,拼成怎样的图形,利用怎样的方法拼成的?

③它们的高与梯形的高有怎样的关系,它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

④先独立思考后小组交流

生小组合作探究。师巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。

3、(出示《一米范文·》课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示。)

师引导得出如下几种推导思路:(师边利用课件演示边讲解)

思路一:用两个完全一样的梯形拼成一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出

梯形面积=(上底+下底)×高÷2

思路二:把梯形剪成一个平行四边形与一个三角形,梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出

梯形的面积 =上底×高+(下底-上底)×高÷2

=(上底+下底)×高÷2

思路三:沿梯形的一条对角线剪开,把梯形分割成两个三角形。得出梯形的面积等于两个三角形面积之和,从而推出

梯形的面积 =上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”。

师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?学生用字母表示出梯形的面积计算公式:S=(a+b)h÷2

五、巩固提升

1、(出示课件),三峡水电站全景图及第89页例3并读题。同时出示水电站的横截面的简图(梯形)。提问,实际求什么?

S =(a+b)h÷2

=(36+120)×135÷2

=156×135÷2

=10530(㎡)

2、计算下面图形的面积,你发现了什么?

六、总结结课

1、这节课你学到了什么?要计算梯形的面积,必须要知道几个条件?还要注意什么?

2、我们是怎样得出梯形面积的公式的?

(二)教师总结

今天我们利用转化的思想推导出了梯形的面积计算公式,并会用梯形的面积计算公式解决生活中的实际问题。

相关推荐

热门文档