八年级上册数学教案【优推4篇】
【路引】由阿拉题库网美丽的网友为您整理分享的“八年级上册数学教案【优推4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
人教版八年级数学上册教案【第一篇】
一、创设情景,明确目标
多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。
二、自主学习,指向目标
学习至此:请完成《学生用书》相应部分。
三、合作探究,达成目标
多边形的定义及有关概念
活动一:阅读教材P19。
展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角?
小组讨论:结合具体图形说出多边形的边、内角、外角?
反思小结:多边形的定义及相关概念。
针对训练:见《学生用书》相应部分
多边形的对角线
活动二:(1)十边形的对角线有35条。
(2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。
展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n—3)是什么意思?为什么要除以2?
反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。
小组讨论:如何灵活运用多边形对角线条数的规律解题?
针对训练:见《学生用书》相应部分
正多边形的有关概念
活动二:阅读教材P20。
展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么?
小组讨论:判断一个多边形是否是正多边形的条件?
反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。
针对训练:见《学生用书》相应部分
四、总结梳理,内化目标
本节学习的数学知识是:
1、多边形、多边形的外角,多边形的对角线。
2、凸凹多边形的概念。
五、达标检测,反思目标
1、下列叙述正确的`是(D)
A、每条边都相等的多边形是正多边形
B、如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形
C、每个角都相等的多边形叫正多边形
D、每条边、每个角都相等的多边形叫正多边形
2、小学学过的下列图形中不可能是正多边形的是(D)
A、三角形B。正方形C。四边形D。梯形
3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。
4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。
人教版八年级数学上册教案【第二篇】
教学目标
1.掌握等边三角形的性质和判定方法。 2.培养分析问题、解决问题的能力。
教学重点:
等边三角形的性质和判定方法。
教学难点:
等边三角形性质的`应用
教学过程
I、创设情境,提出问题
回顾上节课讲过的等边三角形的有关知识
1.等边三角形是轴对称图形,它有三条对称轴。
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形。
4.有一个角是60°的等腰三角形是等边三角形。
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法。
II、例题与练习
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上。
③过边AB上D点作DE∥BC,交边AC于E点。
2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小。
分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.
3. P56页练习1、2
III、课堂小结:1.等腰三角形和性质;等腰三角形的条件
V布置作业:页习题第ll题。
2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形。这样的点有多少个?
人教版八年级数学上册教案【第三篇】
教学目标
1.等腰三角形的概念。
2.等腰三角形的性质。
3.等腰三角形的概念及性质的应用。
教学重点:
等腰三角形的概念及性质。 2.等腰三角形性质的应用。
教学难点:
等腰三角形三线合一的性质的理解及其应用。
教学过程
Ⅰ.提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:
①三角形是轴对称图形吗?
②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是。
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。
Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形。
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。
思考:
1.等腰三角形是轴对称图形吗?请找出它的对称轴。
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。
由此可以得到等腰三角形的'性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程).
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数。
分析:根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形内角和为180°,就可求出△ABC的三个内角。
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等边对等角).
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识。
Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结。
Ⅳ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。
Ⅴ.作业:课本P56习题第1、2、3、4题。
板书设计
等腰三角形
一、设计方案作出一个等腰三角形
二、等腰三角形性质:1.等边对等角2.三线合一
人教版八年级数学上册教案【第四篇】
学习目标
1.掌握等腰三角形的有关概念和性质,运用等腰三角形的性质解决问题。
2. 通过学生之间的交流活动,培养学生主动与他人合作 交流的意识和良好的学习习惯。
学习重点
探索和掌握等腰三角形的性质及其应用。
学习难点
等腰三角形的性质的应用。
学习 过程
一、你知道吗?
等腰三角形的有关概念
《等腰三角形应用》讲义
课前预习
,SSS,ASA,AAS,HL
2.这条线段的两个端点的距离相等
3.这个角的两边的距离相等
4.这样的点有4个
?知识点睛
1.线段垂直平分线上的点到这条线段的。两个端点的距离相等
2.角平分线上的点到这个角的两边距离相等
3.顶角的平分线 底边上的中线 底边上的高 三线合一
《等腰三角形》专项练习
1、填空题
2、如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,如此作下去。若OA=OB=1,则第 个等腰直角三角形的面积 。