数学分数乘法教案(汇总5篇)
【导言】此例“数学分数乘法教案(汇总5篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
《分数乘法》教学设计【第一篇】
《分数乘法》教学设计
教学内容:
人教版小学数学教材六年级上册第14~15页例9及做一做,练习三第4~7题。
教学目标:
1.让学生在解决“求一个数的几分之几是多少”的分数乘法基本问题的基础上,尝试自己学会解决较复杂的“求比一个数多(或少)几分之几的数是多少”的分数乘法问题。初步构建分数乘法问题的知识结构。
2.培养学生的阅读理解分析能力,以及合作意识和相互沟通的能力。养成良好的解决问题的检验习惯。
目标解析“求比一个数多(或少)几分之几的数是多少”的分数乘法问题较复杂,是在解决“求一个数的几分之几是多少”这类分数乘法基本问题的基础上发展引申出来的,教师可以放手让学生在旧知识的基础上自主学习,大胆探究。
教学重点:
让学生在解决简单的分数乘法问题的基础上,学会解决较复杂的“求比一个数多(或少)几分之几的数是多少”的分数乘法问题。
教学难点:
初步构建分数乘法问题的知识结构。
教学过程:
一、情境引入,阅读思考
(一)课件出示信息
人心脏跳动的次数随年龄而变化。青少年心跳每分钟约75次,婴儿每分钟心跳的次数比青少年多。
(二)阅读信息,思考问题
1.请学生认真阅读信息,思考:根据这些信息你能提出哪些问题?
预设:(1)婴儿每分钟心跳比青少年多多少次?
(2)婴儿每分钟心跳的次数是青少年的'几分之几?
(3)婴儿每分钟心跳多少次?
2.这些问题中,哪些你能解答出来?
对于前两个问题,学生根据自己学过的知识就能解答。解答完第一个问题时,说说怎样解决“求一个数的几分之几是多少”的问题。
设计意图一方面复习解决分数乘法基本问题的方法,对解决分数乘法问题中表示数量关系的句子进行深入理解,为后续学习做好准备;另一方面,让学生学会收集、选择和加工信息。
二、由浅入深,探索新知
(一)改题
在课件上补充前述问题(3):“婴儿每分钟心跳多少次?”,呈现例9。
(二)探索解决稍复杂分数乘法问题的方法
1.认真阅读例9,理解题意。
阅读课本第14页例9及下面的“阅读与理解”和“分析与解答”的线段图,并思考:
(1)你从题目中读懂了什么?把“阅读与理解”栏目的内容填写完整。
(2)从“分析与解答”的线段图中你又读懂了什么?说说每一条线段的意义。
(3)你认为该怎样解决这个问题?尝试自己做一下。
2.同桌讨论。
(1)说说题意和图意。
(2)把你的解题思路说给同桌听。
3.集体讨论。
(1)说说你是怎样理解题意的?(可直接读题理解,也可通过线段图理解。对于遇到困难的同学,可以再次出示线段图辅助理解,尤其是对第二种解法的理解)。
(2)你是怎样解答的?说说解题思路。
方法一:
方法二:
(3)你能用自己的方法检验两位同学的解答是否正确吗?如果有困难可以提示一下(算算135次比75次多几分之几?)。
4.回顾小结。
你是通过哪些途径来理解题意的?(反复阅读,画线段图,找准表示单位“1”的量等,特别强调画线段图在理解题意中的作用。)
设计意图通过学生阅读例题、画线段图等活动培养学生的阅读能力和自主探究的能力。又通过讨论、小结,使每位同学都学有所得,同时培养学生的合作意识和沟通能力。
《分数乘分数》教学设计【第二篇】
今天教学了分数乘分数(例4和例5),在课前研究教材时就觉得不太好理解,因为例题中都有两个单位“1”, 比如画斜线的1份占1/2的1/4,此时的单位"1"是1/2,但是对于整个长方形来说是1/8,此时的单位“1”是一个长方形。
后面的1/2的3/4,以及对例5的两个算式的理解都是同出一辙。但要注意两者教学时的区别:例4是让学生从图中猜想(感知)出两个分数乘分数的结果。例5是让学生先猜算结果,再用图来验证。二者在教学中的顺序是相反的,但其目的都是让学生从图形直观感知进而理会出分数乘分数的计算方法。
但是从学生的反馈来看,好像不能够充分理解,确实是太抽象了,虽然有图的辅助。分开来看都能理解——斜线部分是1/2的1/4,又是这张纸的1/8。但是为什么1/2的1/4就是1/8呢?这其间可是隐含着两个不同的单位"1"啊。学生能转得过来吗?单靠猜想感知行吗?教学时我是照书按步就班的教的,但有不少学生好像钻到云雾里去了。
为什么呢?怎么办呢?
原因很简单——太抽象了。
办法是有的——化抽象为形象:我们来看看练习九的第1题,与例题的最大的区别在于例题是在数之间思考,练习中的第1题是在数量之间的思考。不要小瞧这一点变化,借助数量来理解就比例题数之间的理解要容易得多。
本课的教学目的是教学分数乘分数的计算方法,前面的几个例题都是借助具体的数量让学生理解算理的,而分数乘分数比前面的几个例题都复杂些,但是却摆脱数量而抽象成数,学生的思维难度陡增。为什么不借助数量呢?如果把例题转换成像练习九第1题这样的情境,学生会很容易列式,也比较容易理解算理。在此基础之上,再抽象成数,如例题式样的,学生学起来会好得多。]
《分数乘分数》【第三篇】
我做了,就理解了----“分数乘分数”案例与反思
不久前,在教学“分数乘分数”时,有一些反思,现整理如下:
〖案例一〗
浙江版教材是这样安排和处理的:一台饲料粉碎机,每小时粉碎饲料1/2吨,3/4小时粉碎饲料多少吨?引导学生想:3/4小时粉碎饲料多少吨,就是求1/2吨的3/4是多少,算式是1/2×3/4。通过“数形结合”的方法引导学生观察和思考:1小时粉碎饲料1/2吨,1/4小时粉碎1/2吨的1/4,就是把1/2吨平均分成4份,取中的1份,也就是把1/2吨平均分成(2×4)份,取其中的1份。3/4小时粉碎1/2吨的3/4,就是取3个1/ (2×4),结果是…… ,最后师生归纳分数乘以分数的计算法则。
反思一
这样的安排侧重于意义的学习,但由于例题的安排缺乏一定的问题情境和生活情境,比较枯燥和抽象,很难调动学生的求知欲望。因为学生的学习不是简单地接受知识,而是在体验和创造中学习。我们的数学教学应该从学生的生活经验出发,从学生已有的数学知识结构出发,基于这样的想法,在实际教学中,我进行这样的处理:
〖案例二〗
先创设问题情境地,分数单位乘以分数单位。课件出示一个边长为1米的正方形,面积为1平方米。然后,在正方形一角又出示一个小长方形,请大家估计一下,图中的阴影部分大约是多少平方米,用分数表示。(学生猜测、估计)。课件出示背景格子图,学生很容易就看出来整个正方形被平均分成了20份,而这个阴影部分恰好是1/20平方米;这个格子图把正方形的边长分别平均分成了4份和5份,即:这个长方形阴影的长和宽分别是1/4米和1/5米。学生已经知道长方形的面积是长乘宽,那么1/5×1/4和1/20平方米之间有什么联系?你有什么想法?指导学生进行交流……
反思二
教学情境是一种特殊的教学环境,是教师为了支持学生的学习,根据教学目标和教学内容有目的地创设的教学环境。建构主义学习理论认为,学习是学生主动的建构活动,学习应与一定的情境相联系,在实际情境下进行学习,可以使学生利用原有知识和经验同化当前要学习的新知识。这样获取的新知识,不但便于保持,而且容易掌握迁移到新的情境中去。创设教学情境,不仅可以使学生容易掌握数学知识和技能,而且可以使学生更好地体验教学内容中的情感,使原来枯燥的、抽象的数学知识变得生动形象、饶有兴趣。从现代教学论的观点看,数学教师的主要任务就是为学生设计学习的情境,提供全面、清晰的有关信息,引导学生在教师创设的教学情境中,自己开动脑筋进行学习,掌握数学知识。
孔企平说,我们在课堂里讲的数学学科与数学家研究的数学是有区别的。数学家研究的数学学科是从概念、公理、定理出发的以逻辑体系为基础的数学,而我们给学生讲的数学则更多地建立在学生经验的基础上,是这方面生活经验的升华。所以,这样的设计充分考虑到学生的已有的知识经验,
但这样的设计显然对算理的学习不足,学习知识的过程中学生的体验也是不足的。另外,所有这一切,包括图形和数据,都是教师事先准备好的,学生的所有猜想与活动都是在老师所划定的“圈子”里进行,虽然我精心为学生创设了一个探索的情境,但是,学生还是被老师牵着鼻子走。
〖案例三〗
活动与问题:1、每人拿出一张长方形纸,折一折,表示出它的1/□,涂上颜色;再把这张纸的1/□看作单位“1”,表示出它的1/□,也就是1/□的1/□,把折出的1/□涂上然后把这张长方形展开看一看,涂色部分是这张纸的几分之几? 2、你能把刚才折纸的操作活动用算式表示出来吗?3、猜想与验证:涂两种颜色的阴影是整个长方形的几分之几?打开折纸并验证。4、把学生的算式和结果尽可能多的都写在白板上。5、小组讨论并发现规律。……
反思三
《国家数学课程标准》中强调:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。” 如何把一些抽象的数学概念变为小学生看得见、摸得着、理解得了的数学事实?这是每个数学教师在课堂教学中必须很好考虑的问题。许多成功的案例说明,让小学生动手操作是提高数学学习的有效策略之一,因为这样做既符合儿童的生理、心理特征,可以吸引他们把注意力集中到有意识的教学活动中来;又能使他们在大量的感性材料的基础上,对材料进行整理,找出有规律的现象,逐步抽象、概括,获得数学概念和知识,使抽象问题具体化。
基于这样的认识,在实践中设计本课时,有以下三个想法:
1、开放式的教学设计。把一张长方形的纸折成1/□,可千万不要轻视这个小小的“□”,它给学生的很大的空间和权利。我们常说,学生是学习的主人;这个“□”就是在“把学习的权利还给学生”;2、让学生经历“猜想”与“验证”的过程,并在这个过程中学会研究数学问题的方法,有了大胆的猜想才会更有继续研究的欲望。3、在亲身活动中感受数学。美国华盛顿儿童博物馆的墙壁上张贴着一句格言:我听见了,就忘记了;我看见了,就知道了;而我做了,就理解了。案例三的设计重视学生的动手操作,把较复杂的分数乘分数的计算方法,用“折纸”这一直观动作进行反映,有利于学生感受和理解计算方法。
现代教学论认为,每位学生都有潜力,教师的作用仅仅是激发这种潜力。因此,在小学数学课堂教学中,教师就应力求凸显学生生命的主体地位,创设一定的情境,激发其内在的发展潜力,放手让学生参与学习活动。让他们经历知识的发现、问题的思考、规律的寻找、结论的概括、疑难的质问乃至知识结构的建构等一系列的数学活动过程,使短短的一节课,时时充满生命活力。这是学生课堂生命活动得以充分展现的关键。作为教师,在设计教学活动时,要尽可能给他们提供动手操作的机会。但数学课的操作毕竟是学习意义上的操作,是一种特殊的动手活动,在组织操作活动时必须注意以下几点:一是要有明确的操作目的,切忌为了操作而操作,使活动本身流于形式。二是要给学生留有足够的思维空间。学具操作要注意适时、适量和适度。适时就是要注意最佳时机,当学生想知而不知,似懂而非懂时,用学具摆一摆,就会起到化难为易的效果。适量是指要控制使用的次数,活动的时间,并不是搞得越多越好。适度是指当学生的感性认识已积累到一定程度时,就应引导学生在丰富的表象的基础上及时抽象概括,掌握火候,使感性认识逐步上升为理性认识。
分数乘法教学设计【第四篇】
教学目标
1、结合具体情境,进一步探索和理解分数乘整数的意义,并能够熟练准确的计算。
2、能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
3、使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
教学重点:
理解整数乘以分数的意义,并能证确计算。
教学难点:
运用所学的知识解决分数乘法的实际问题
教学过程
一、复习导入:
1、2/3×2表示的意思是()。
2、计算分数乘整数时,用分数的()和整数相乘的积作(),分母()。
3、请学生计算下列分数乘法运算题。
1/8×3
3/10×4
7/24×12
二、情境创设
教师出示课件课本情境图:小红有6个苹果,淘气的苹果是小红的1/2;笑笑的苹果是小红的1/3,淘气和笑笑各有几个苹果?
1、教师让学生思考这个题,并对学生进行提问。
2、引导学生分析,无论是淘气还是笑笑的苹果数,都是以谁为标准的?两者都以小红的苹果数6为标准,我们把“小红的苹果数6”看做一个整体。淘气的苹果是6个的1/2,即把6个苹果平均分成2份,其中的份就是淘气的苹果数。教师出示课件图。还有其它分的方法么?学生交流。教师板书6×1/2
3、教师提问学生说一说自己是怎样计算的?
4、学生自己动手填完课本例题上的方格。
5、怎样表示笑笑的苹果数?
6、教师板书(笑笑:6×1/3=2)
7、总结分数乘法的意义就是求一个数的几分之几是多少。
8怎么计算呢?6×1/2=6×1/2=36×1/3=6×1/3=2教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的计算方法。
三、巩固练习:
1、计算8×3/10
4×3/10
24×3/8
2、做课本5页试一试1题,36的1/4和1/6分别是多少?
注意让学生体验求一个整数的几分之几是多少的数学意义。
3、试一试2,学生说说:“打折”的意思?八折、九折分别表示什么意思?学生计算
四、课堂小结:同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计
分数乘法(二)
整数乘以分数的意义:就是求整数的几分之几是多少?
整数乘以分数的计算方法:用整数与分子相乘的积作分子,分母不变。能约分的要先约分。
教学反思:
本节课有以下优点:
1、针对教材提供的情境,引导学生理解整数乘以分数的意义通过课堂活动使学生认识到分数乘法就在我们的生活中,学生对分数乘法的意义有了更深的理解。
2、抓住了图形语言的直观性,借助图形理解整数乘以分数的意义,是自己的小课题研究落到了实处。
分数乘法教学教学设计【第五篇】
教学目的:
1、使学生掌握分数乘以整数的意义、算理和法则。
2、培养学生的知识迁移能力。
教学重点:学生对计算法则的掌握,以及在计算中能约分的要约分。
教学难点:学生对算理掌握。
教学过程:
一、引探准备:
1、4个7连加是多少?怎样计算?
2、还可以怎样计算也得28呢?
3、如何列式?为什么这样列式?
4、学生小结整数乘法的意义。
二、引探过程:
1、今天我们一起研究分数乘法中分数乘以整数这部分知识。
2、出示例1:一个修路队每天修路3/10千米。3天修多少千米?
3、学生读题,分析。
4、问:你想怎样计算?这两种方法都行吗?为什么?(板书)3/10+3/10+3/10 3/10×3
5、学生小结:分数乘法的意义(分×整)是什么?(相同加数和的简便运算)
6、3/10×3如何计算?(学生讨论)3/10×3=3/10+3/10+3/10=3+3+3/10=3×3/10=9/10(千米)
7、问:3×3/10是怎么来的?
8、谁能说说分数乘以整数是怎么算的?
9、小结法则:分数乘以整数,用分数的分子和整数相乘的积做分子,分母不变。
10、练习:说出3/17×5和4/15×6的意义并计算。
11、指书比较4/15×6还有更简便的方法吗?
12、小结:分数乘以整数时怎么算简便?
三、引探总结:
3/18×6 2/5×15 3/7×6
四、引探实践:
你认为今天那些知识最让你感兴趣?