四年级数学下册教案(5篇)
【导言】此例“四年级数学下册教案(5篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
四年级下册数学教案【第一篇】
教学背景:
统计是数学的一个重要的思想方法,它通过对数据的收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们做出合理的推断和预测。进而形成尊重事实、用数据说话的科学态度。《数学课程标准》非常重视“统计与概率”,并且指出在教学“统计”要从传统上比较注重统计图表有关知识点的教学转向重视学生对数据统计过程的体验,学会一些简单的收集、整理和描述数据的方法,认识统计的作用和意义。根据一年级学生的年龄特点,我确定本课(人教版一年级下册第94页例2)的教学目标如下,
教学目标:
1.使学生在自己喜欢的情境中学习数据整理,激发学习兴趣,感知数学在生活中的作用。
2.使学生感受、经历数据的整理过程,初步认识统计图和统计表,能正确填写统计图和统计表,能从中获得简单统计的结果。
3.使学生能使用各种统计的方法以及“正“字的统计方法统计数据。
4.初步培养学生的有序观察与思考的习惯和数学应用的意识,体验与同伴合作的欢乐。
教学重点:
使学生初步学会收集和整理数据,初步认识统计图和简单的统计表。
教学难点:
“正“字的统计方法。
情境描述:
方案一为:按照课本例2提供的情境进行。统计喜欢哪种颜色的花的人数。导入过程:六一儿童节到了,小朋友们正在用鲜花来装扮他们的教室,这里有哪几种颜色的花?你喜欢哪种颜色?然后对喜欢各种颜色的花的人数进行统计。(评析:学生学习比较被动,不知道为什么要对喜欢哪种颜色的花进行统计,学生兴趣并不高。)
方案二为:统计喜欢哪种活动的人数。教学片断如下
师:六一儿童节就要到了,我们班要搞一个活动。这里有四项活动,它们分别是“强凳子、拍皮球、夹弹子、考考你”(这是我了解到的孩子喜欢的一些活动,为了激起孩子的兴趣,我选了一些他们普遍喜欢的活动让他们选择。我把这些活动写在黑板上),这些活动你喜欢吗?
学生一下子来劲了,齐刷刷的说:喜欢
师:你最喜欢哪个活动呢?
我环视了一下四周,孩子们都迫不及待的要说出口。
我停了停又说:请把你最喜欢的一个活动写在老师发的纸条上,注意只能写上你最喜欢的一个。孩子们很快写好了,然后由组长收起来。(评析:给孩子神秘感,使得孩子更期待下面的学习活动,由“要他学”一下子转变成“他要学”了。)
师:现在老师想利用手里的这些纸条来知道,选哪个活动的人最多,那么这个活动将作为我们班六一儿童节时的一个活动。我该怎么办呢,请你帮老师想想办法吧!
怕几个孩子没能听清楚,我又说了一次:我怎么利用这些纸条知道,选哪个活动的人最多?
孩子们开始动起了脑筋,他们也遇到了问题。过了一会,一个孩子举起了手。
生1:你可以看一看纸条,看看哪个选的人最多就可以了。
师:是一张张看过来吗?
生1:嗯
师:唉!这个小朋友的方法好吗?
生2:我觉得不太好,这么多纸条怎么看得清楚,可能看了就忘了。
师:你说得很有道理,老师也是这么想的。那么有没有更好的方法了。
生3:我们可以做一下记录。
师:怎么记录?
生3:用打钩的方法。看一看选的是那个活动就在哪个活动下打钩。
师:你这个方法真不错。其他小朋友呢,你们用什么方法来记录呢?请小朋友们四人小组讨论一下可以怎样记录。学生开始讨论。(采用小组合作讨论的方法,使学生在积极主动学习的课堂中享受到自己学会知识的愉悦)
师:请各小组派代表说一说,你们准备用什么方法记录。
方法有:打圆,打三角形,打五角星,划横的,写正字。
讨论好了,我叫孩子们在准备好的草稿纸上跟着我把这几个活动写上。我在黑板上写了一组。然后叫了三个分别是用打钩,划横,写正字的学生上黑板统计,其他学生在自己的草稿本上统计。老师将纸条上的活动念一遍,学生用自己喜欢的方法记录、整理数据。
师:记录方法和符号没有统一要求,同学们喜欢用什么符号就用什么符号,那谁能用更直观、更形象的方法来表示呢?
学生小组活动:每组拿出一张空白虚线框图,进行制作统计图。小组汇报并展示统计图(评析:通过学生实践经验来学习知识,更体现数学源于生活从而引发学生更强烈的求知欲望)
教学总结:
方案二的课堂气氛明显好于方案一。方案一中,孩子们的反应显得非常被动,纯粹是为了学数学知识而在上课,孩子们显得难以接受。而方案二,学生就显得非常活跃主动了。方案一的导入,为什么学生的学习积极性没有呢?追其原因主要是:首先,孩子们不明白,为什么要统计这些喜欢不同颜色的花的人数,教材提供的情境不够贴近实际,没有展示出为我什么要进行统计,统计了是干什么,纯粹像是为了要学习统计这一内容而设计的一个情境。再次:虽然课本的例题提供了具体的情景,但孩子们兴趣不大,因此不能吸引学生的眼球。其次:在选择最喜欢哪种颜色的花时,可选性不大。因为这些花看起来都差不多,因此孩子们不知道到底选哪个好,选的时候也只是随便定了一个。而方案二就不同了:首先,这些活动孩子们都非常喜欢,看到六一节要搞这些活兴趣一下子来了,都迫不及待的想要告诉大家。其次:孩子们清楚统计的原因,要选出六一节的活动就要选择喜欢的人最多的那个,所以要进行人数统计。并且可选性要比例题的大。
四年级下册数学教案【第二篇】
小数天地
[复习内容] :课本第102、103页的有关内容。
[复习目标] :
1、复习小数四则运算,以及运用相关知识解决简单问题。
2、对学过的知识进行回顾、整理和反思,培养自我评价能力。
[复习重难点] :
1、 进一步理解小数意义。
2、 提高运算能力。
[复习准备] :课件
[复习方法] :练习法、小组讨论法。
[复习过程] :
一、 整理导入。
本学期我们又学了一些小数知识,回忆一下你学到哪些知识?
二、整理知识。
让学生翻阅课本中的第一、三、五单元内容。看看学了哪些知识。
1、 学生独立翻阅课本。
2、 让学生与同桌的伙伴交流,说说学到了哪些知识。
3、 利用表格或网络图的方法进行归纳整理。(脚可以提供一些思路或表格)
4、 展示学生的作品。
三、课堂练习。1、小数读写。课件呈现:
五点八七四
二百三十点九
十二点零三 零点零八二
一点零二三
要求:
(1)降落伞逐一出现,从上而下,降落平台一次性出现;
(2)学生看“读数”找“写数”,看“写数””找“读数,判断降落点;
(3)完成课本第102页的第1题。
2、小数计算。完成课本第102页第2、3题。
教师以口算卡片出示,学生口答,部分题目让学生说说怎么想的,怎么算的,计算法则以及注意点。
3、解决问题。
(1)让学生说说生活中遇到的小数。
(2)结合生活情景,提出数学问题。
如:教室的长是米,宽米。
○1教室的周长是多少米?
面积是多少米?
长是宽的几倍?
○2课件呈现:
节日特别供应
精致汉堡 每块元
薯条 每包元
可乐 每杯元
根据情景图,提出数学问题。学生可能会提出加法、减法、乘法、除法的问题。
四、巩固练习。
完成课本第102、103页的第4~10题。
四年级下册数学教案【第三篇】
加法交换律和结合律
一、教学内容:加法交换律和结合律P17——P18
二、教学目标:
1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点
重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备
多媒体课件
五、教学过程
(一)导入新授
1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?
师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!
2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)
3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现
第一环节 探索加法交换律
1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”
学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)
你能用等号把这两道算式写成一个等式吗? 40+56=56+40
你还能再写出几个这样的等式吗?
学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。
2、观察写出的这些算式,你有什么发现?并用自己喜欢的方式表示出来。
全班交流。从这些算式可以发现:两个数相加,交换加数的位置,和不变。
可以用符号来表示:△+☆=☆+△;
可以用文字来表示:甲数十乙数=乙数十甲数。
3、如果用字母a、b分别表示两个加数,又可以怎样来表示发现的这个规律呢?
a+b=b+a
教师指出:这就是加法交换律。
4、初步应用:在( )里填上合适的数。
37+36=36+( ) 305+49=( )+305 b+100=( )+b
47+( )=126+( ) m+( )=n+( ) 13+24=( )+( )第二环节 探索加法结合律
1、课件出示教材第18页例2情境图。
师:从例2的情境图中,你获得了哪些信息?
师生交流后提出问题:要求“李叔叔三天一共骑了多少千米”可以怎样列式?
学生独立列式,指名汇报。
汇报预设:
方法一:先算出“第一天和第二天共骑了多少千米”:
(88+104)+96
=192+96
=288(千米)
方法二:先算出“第二天和第三天共骑了多少千米”:
88+(104+96)
=88+200
=288(千米)
把这两道算式写成一道等式:
(88+104)+96=88+(104+96)
2、算一算,下面的○里能填上等号吗?
(45+25)+13○45+(25+13) (36+18)+22○36+(18+22)
小组讨论。先比较每组的两个算式,再比较这三组算式,在小组里说说你有什么发现。
集体交流,使学生明确:三个算式加数没变,加数的位置也没变,运算的顺序变了,它们的和不变。也就是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
3、如果用字母a、b、c分别表示三个加数,可以怎样用字母来表示这个规律呢?
(a+b)+c=a+(b+c)
教师指出:这就是加法结合律。
4、初步应用。
在横线上填上合适的数。
(45+36)+64=45+(36+ )
(560+ )+ =560+(140+70)
(360+ )+108=360+(92+ )
(57+c)+d=57+( + )
(三)巩固发散
1、完成教材第18页“做一做”。
学生独立填写,组织汇报时,让学生说说是根据什么运算律填写的。
2、下面各等式哪些符合加法交换律,哪些符合加法结合律?
(1)470+320=320+470
(2)a+55+45=55+45+a
(3)(27+65)+35=27+(65+35)
(4)70+80+40=70+40+80
(5)60+(a+50)=(60+a)+50
(6)b+900=900+b
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:学习了加法交换律和结合律,并知道了如何用符号和字母来表示发现的规律。
(五)板书设计
加法交换律和结合律
加法交换律 加法结合律
例1:李叔叔今天一共骑了多少千米? 例2:李叔叔三天一共骑了多少千米?
40+56=96(千米) (88+104) +96 88+(104+96)
56+40=96(千米) =192+96 =88+200
=288(千米) =288(千米)
40+56=56+40 (88+104)+96=88+(104+96)
a+b=b+a (a+b)+c=a+(b+c)
两个数相加,交换加数的位置,和不变。 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
六、教学后记
四年级下册数学教案【第四篇】
教学内容:
课本22页例3和做一做及练习四1、2题。
教学目标:
1、通过活动使学生学会以不同的地点为观测点判断方向。
2、在学生学会确定任意方向的基础上,使学生体会位置关系的相对性。
3、通过学习,进一步提高学生的空间观念。
重点难点:
使学生进一步认识到位置关系的相对性。
教学用具:
挂图
教学过程:
一、创设情境 生成问题
1、师:老师站在大家的正东方向上,那么你们站在老师的什么方向上呢?(西方)对,我们的位置关系是相对的。
2、分别指两名学生,让大家根据方向说一说他们的位置关系。
(设计意图:组织学生先弄清东西南北四个方向,再根据两名学生的位置分别说一说谁站在谁的方向上,使学生初步理解位置的相对关系。)
3、师:今天我们就来继续研究两个物体位置的相对关系。
(设计意图:通过创设情境,让学生对上两节课学习内容有一个大体的回顾,为本节课新知识的学习做准备。)
二、探索交流 解决问题
1、出示教材第22页例3主题图。
(1)让生观察地图
师:北京和上海两地相距大约 1000千米,说一说,上海在北京的什么方向上?
①组织学生用直尺,量角器测量出上海在北京的什么方向上。
师根据学生汇报板书: ②讨论:上海在北京的南偏东30℃方向上,那么北京在上海的什么位置呢?
组织学生观察上图,在小组中讨论,然后交流说一说。
出示提示
1.确定以谁为观测点,并建立方向标。
2.用语言描述北京和上海的具体位置。
讨论后每组选出一名同学在班内汇报。
生汇报。
可能会说出:北京在上海的西偏北60℃方向上或北京在上海的北偏西30℃的方向上。
师对照图示指一指,肯定两种说法都是正确的。
师小结:以北京为观测点,上海在北京的南偏东约30度的方向上。以上海为观测点,北京在上海的北偏西30度的方向上。
观测点不同,物体的相对位置就会发生变化。这就是今天这节课学习的内容。
四年级下册数学教案【第五篇】
教学目标:
1、鼓励学生运用猜测、举例、验证等数学方法学习乘法分配律。
2、在学习的过程中,树立用规律简算,增强用规律验算得意识。
设计理念:
1、体现了“生活中处处有数学”。
2、课堂上灵活处理教材,选择适当的教法。
3、提高了小组的合作学习有效性。
4、促进了学生的主动性、个性化的学习。
课前准备:
教学挂图
教学过程:
一、创设情境,引出课题。
出示数学挂图:通过看图,把图意说一说。
二、提出问题,解答质疑。
弄清题以后,你能提出什么数学问题吗? (小组讨论)
生答师板书:济青高速公路全长约多少千米? 怎样解答呢?
(1)要求全长多少千米,可以先求每辆车分别行驶的路程,再求全长的路程。
110 × 2 + 90 × 2 = 220 + 180 = 400 (千米) 还可以先求两辆车1小时行驶的路程,再求全长的路程。
(110+90)× 2 = 200 × 2 = 400(千米)
仔细观察,你能发现什么规律? (小组合作探讨)
生交流:发现两个算式的结果相等。 110×2 + 90×2 =(110+90)× 2 这是个什么规律呢?让我们来验证一下吧。
(小组合作学习) 生自己举例来验证
生答师小结:两个数的和乘一个数,可以把它们分别乘这个数,再把乘得的积相加,这个规律就叫做乘法分配律。 你能用字母表示出这个规律吗?
生板书: (a + b).c = a .c + b .c 通过学习,让学生思考运用乘法分配律解决实际问题。 让学生讨论交流自己的想法:
①可以进行验算。
②可以使计算简便。 运用乘法分配律能使计算简便吗? (生小组举例探讨)
三、巩固练习
自主练习: 第一题:让学生在小组中快速连接,并说一说运用了什么运算定律。
第二题:先让生自己解答,然后再组内互相说出师运用的什么定律。
第三题:先观察,再说出对错,然后把错的题重新做出来,集体订 正,并说出错题错在哪里。
板书设计: 乘法分配律
110×2 + 90×2 (110 + 90)×2 = 220 + 180 = 200×2 = 400(千米) = 400(千米)
两个数的和乘一个数,可以先把它们分别和这个数相乘,再把乘得的积相加,这个规律就叫做乘法的分配律。
( a + b).c = a .c + b .c