平行四边形教案精彩4篇
【导言】此例“平行四边形教案精彩4篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
平行四边形教案【第一篇】
教学目标
1.能够从图中全面感知平行四边形现象,体会平行四边形在生活情景中的存在。,
2.通过观察、操作等活动,认识平行四边形的一些特征。
3.经历探索平行四边形的过程,了解它的基本特征,进一步发展空间观念。
教学重点
通过观察、操作等活动,认识平行四边形的一些特征
教学难点
经历探索平行四边形的过程,了解它的基本特征
教学过程
激发兴趣
一、(出示主题图)
我们已经认识了平行四边形,请同学们仔细
观察主题图,图中都有些什么物体,这些物体
都反映出一些什么现象?
这些现象正是我们本单元所要研究和学习
的平行四边形。(板书课题)
仔细观察
小组活动
探索、感知
探索新知 1.拉一拉。
师:拿出你们准备的长方形木框,用手捏住相对的两个角,向相反的方向拉动,边拉动,边观察你有什么发现?与原来的长方形有什么相同和不同?
生:可以拉成不一样的平行四边形。……
师:说明平行四边形易变形。(板书:易变形)
2.画一画,比一比 。
(拉到一定的位置不变)师将拉成的'平行四边形画在黑板上。学生将拉成的平行四边形画在纸上。 观察平行四边形,你发现了什么?
生:相对的两条边互相平行……
抽生演示测量两组对边分别平行。
师课件演示两组对边分别平行。
师小结:两组对边分别平行平行的四边形叫做平行四边形。
3.量一量,填一填,说一说。
师:先给平行四边形的边和角编上号。每位同学都用直尺量一量平行四边形的四条边,用三角板量一量四个角,然后填表。
长边 长边 短边 短边 边 ∠1 ∠2 ∠3 ∠4 角
观察表格,你有什么发现?
将自己的发现在小组交流,然后讨论平行四边形都有哪些特点?作好记录。
全班汇报。你们组发现了平行四边形都有哪些特点?
师:几组同学的汇报都有哪些相同的地方?你们有吗?
平行四边形都有哪些特征?
总结:1.两组对边分别相等。2.两组对角分别相等。
3.四个内角的和是360
学生操作
抽生汇报
先独立思考,在小组讨论。
独立观察后,同桌交流。然后全班交流。
学生操作,先拉平行四边形,再画。
独立观察
小组交流
抽生汇报
学生发言,其余注意倾听。
独立思考,汇报。
1组:我们发现左右两边的长都是……,上下两边的长都是……
一组对角都是……,另一组对角都是……
2组:……
课堂小结
今天这节课我们学习了些什么?你都有哪些收获?
平行四边形教案【第二篇】
教学目的:
1、深入了解平行四边形的不稳定性;
2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)
3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;
4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。
教学重点:
平行四边形的性质和判定。
教学难点:
性质、判定定理的运用。
教学程序:
一、复习创情导入
平行四边形的性质:
边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
二、授新
1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:
2、自学质疑:自学课本P79-82页,并提出疑难问题。
3、分组讨论:讨论自学中不能解决的问题及学生提出问题。
4、反馈归纳:根据预习和讨论的效果,进行点拨指导。
5、尝试练习:完成习题,解答疑难。
6、深化创新:平行四边形的性质:
边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
7、推荐作业
1、熟记“归纳整理的内容”;
2、完成《练习卷》;
3、预习:(1)矩形的定义?
(2)矩形的性质定理1、2及其推论的内容是什么?
(3)怎样证明?
(4)例1的解答过程中,运用哪些性质?
思考题
1、平行四边形的'性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证; 2、如何证明性质定理3的逆命题? 3、有几种方法可以证明? 4、例2的证明中,运用了哪些性质及判定?是否有其他方法? 5、例3的证明中,运用了哪些性质及判定?是否有其他方法?
跟踪练习
1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )
2、在四边形ABCD中,AC交BD 于点O,若OC= 且 ,则四边形ABCD是平行四边形。
3、下列条件中,能够判断一个四边形是平行四边形的是( )
(A)一组对角相等; (B)对角线相等;
(C)两条邻边相等; (D)对角线互相平分。
创新练习
已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)
达标练习
1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。
2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。
综合应用练习
1、下列条件中,能做出平行四边形的是( )
(A)两边分别是4和5,一对角线为10;
(B)一边为4,两条对角线分别为2和5;
(C)一角为600,过此角的对角线为3,一边为4;
(D)两条对角线分别为3和5,他们所夹的锐角为450。
推荐作业
1、熟记“判定定理3”;
2、完成《练习卷》;
3、预习:
(1)“平行四边形的判定定理4”的内容 是什么?
(2)怎样证明?还有没有其它证明方法?
(3)例4、例5还有哪些证明方法?
平行四边形数学教案【第三篇】
平行四边形的面积
一、教学内容:
青岛版《义务教育课程标准实验教科书》数学四年级下册,第二单元第一课时《平行四边形的面积》。
二、教学目标:
1.探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。
2.经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展空间观念,提高数学素养。
三、教学重、难点:
教学重点:探究平行四边形的面积计算公式,能计算平行四边形的面积。
教学难点:通过探究平行四边形的面积计算公式,感受“转化”思想。
四、教、学具准备:
平行四边形纸、尺子、剪刀、课件
五、教学流程
(一)基础训练
1.听算练习
2.复习学过的图形和面积
设计意图:通过口算,培养学生的口算能力,复习旧知,渗透学习方法,使学生感受变与不变的同时,把数学文化蕴涵其中,提高了学习兴趣的同时,提升了数学素养。
(二)拼一拼,感受变与不变。
师:从这节课开始,我们来学习第二单元的内容“多边形的面积”,提到图形,你能用一副七巧板拼出我们学过的图形吗?
生:能(操作)
师:好!我们看一看黑板上两个同学各用一副七巧板拼成了一个三角形,一个长方形。既然说七巧板是中国的变形金刚,那它一定会变形!你能挪动尽量少的块数把你拼成的图形变成其它图形吗?准备!变!
生:(操作)
汇报:生1:我原来拼的是三角形,现在变成了长方形。
生2:我原来拼的是长方形,现在变成了平行四边形。
师:再变!
师:好了!同学们,在刚刚拼摆的过程中,善于观察和发现的你们一定注意到了图形的什么变了,什么没变?
生:位置变了!
师:位置变了也就是图形的……发生变化了呢? 生:形状!
师:那没变的呢? 生:块数没变?
师:块数没变,也就是图形的…… 生:面积没有变!
生:形状变了,面积没有变!师:你为什么说面积没变呢?
生:都是由这七块板拼成的,块数没变,面积也就没变。师:说得好!这节课我们就在变与不变之中学习习近平行四边形的面积。(板书课题)
设计意图:通过七巧板能够变形的特点,紧紧围绕变与不变,渗透图形间是可以转化的,转化时形状变了,面积不变。在多次变形中,积累数学活动经验,渗透平行四边形和长方形是可以互相转化的。本单元在研究图形的面积时,最关键的就是等积变形,这一设计有效地突破难点。培养了学生用辨证的眼光看问题,提高了动手操作的能力。
(三)猜一猜,验证猜测。
1.猜一猜
师:黑板上这两个图形中,我们会计算长方形的面积,对吧!(从七巧板拼成的长方形上,拓一个完全相同的长方形)
生:对!
师:那怎么求呢?
生:长方形的面积等于长乘宽(板书)
师:平行四边形面积的计算方法呢?(拓平行四边形)。不要急,我们先来猜一猜:它的面积可能与什么有关,怎么计算呢?
生:底乘高
生:邻边相乘。(板书)
师:有位名人曾经说过:大胆的猜测是成功的前提,要想真正成功还要验证。你们知道他是谁吗?(原老师,全场笑)你想用什么方法验证?
生:我想用数格子的方法去验证。
师:嗯!借助学习长方形面积时的经验来验证!其它同学呢?
生:我想用七巧板来验证。
师:利用它能变形来验证。你一会儿可以试一试。生:老师,我想把平行四边形剪一剪,拼一拼…… 师:这也是一个思路!好了!老师给大家提供了一些学具,有七巧板、格子图,当然你也可以剪一剪、拼一拼。
这里有一个操作提示,你来读一读!(课件出示)操作提示:选择自己喜欢的学具,验证你的猜测,先独立思考,再组内交流。
师:大家明确吗?注意:在分发学具和剪一剪的时候要注意安全!好,开始吧!
2.做一做。 生:动手操作。
设计意图:本节课主要的导学思路是猜测—验证—总结—应用。而猜测和验证的方法都是学生提出的,充分体现以学生为主体的设计思路。激活了学生已有的数学活动经验,提高了解决问题的能力。
3.集体汇报
(1)生展示数格子的方法
师:刚才我看到了三种方法,谁用的是数格子的方法?谁借助七巧板?谁用剪拼的方法?谁愿意先来展示一下啊?
生:我是这样数的,把这些半个的三角形平移到右侧去,之后就变成了长方形。这样计算出面积是24平方厘米。因为底是 6厘米,高是4厘米,正好是24平方厘米。因此我认为平行四边形的面积=底×高。
师:这位同学用割补的方法数格子,得到了结论:平行四边形的面积=底×高。谁有不同的方法?
(2)七巧板的方法
生借助〈WWW.〉七巧板汇报:
生:我们组用七巧板研究了平行四边形的面积=底×高。把七巧板拼成的平行四边形右面的小三角形拿下来放到左面,就把平行四边形变成了长方形。平行四边形的面积和长
方形的面积相等。平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
师:你为什么把平行四边形变成长方形呢? 生:因为长方形的面积计算方法我们学过。
师:将平行四边形转化成已经学过的长方形来研究,就是把没学过的转化成学过的知识,抓特点找联系,这是数学学习中重要的“转化”思想(板书)。这位同学不仅用转化的方法,把平行四边形转化成了长方形,而且找到了平行四边形的底和高与长方形的长和宽之间的联系。谁能再完整地向大家介绍一下思路吗?板书:“
”
设计意图:利用七巧板学具研究平行四边形面积的计算方法,使抽象的数学知识更加形象化。在前面操作的过程中,学生已经有了等积变形的经验,此次操作使积累的经验得以升华。也为后面学生利用剪拼的方法研究平行四边形面积的计算方法,奠定基础。学生在玩中学,在学中思,渗透了转化思想,积累了数学活动经验。
(3)剪拼的方法
生:我是沿平行四边形的一条高剪开,把平行四边形转化成长方形。平行四边形的面积和长方形的面积相等。平行四边形的底相当于长方形的长,平行四边形的高相当于长方
形的宽,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
师:你是沿什么剪开的?(沿高剪开)为什么要沿高剪开?(因为要把平行四边形转化成长方形,就是把没学过的转化成学过的)你确定这就是高吗?(我把平行四边形的纸片沿底边折一下使底边重合,因此折痕一定是高)还有其它方法吗?(展示沿任意高剪开的情况)
设计意图:割补法是本单元最常用的,也是最重要的转化法之一。有了前面七巧板的操作,学生很容易想到沿高剪开转化成长方形。设计连续的问题就是让学生明确操作的目的性和严密性,使学生更清晰地认识到把平行四边形转化成长方形时应注意的几个问题,为后续学习其它平面图形的面积奠定基础。
师小结:无论是用数格子的方法,还是借助七巧板来研究以及我们刚才的剪拼过程。方法不同,但都得到了同一个结论:平行四边形的面积=底×高。那邻边相乘对不对?为什么?
生:不对。
(4)讨论:邻边相乘与平行四边形面积公式间的关系。师:(出示长方形框架并拉动框架)什么变了,什么没变?
生:面积变了,但邻边长度没变,也就是乘积没变。所以邻边相乘不能求平行四边形的面积。
师:(再次拉动框架,面积由小到大)我们来看看什么时候可以用邻边相乘?(长方形时)看来邻边相乘只能求特殊的平行四边形也就是长方形和正方形的面积,而底×高,能求任意平行四边形包括长方形、正方形的面积。
设计意图:通过框架操作,突破本节课的难点。在这个环节中,学生再次在变与不变中感受了只有当邻边互相垂直时,也就是斜边变成了高时,才能用邻边相乘求图形的面积,打通了平行四边形的面积计算方法与长方形面积计算方法的联系。
师:刚才我们用转化的方法,研究了平行四边形的面积,得出了面积公式。你们知道它的字母表达式吗?
生:s=ah
师:有一位名人曾经说过,留心观察生活,数学无处不在!你们知道他是谁吗?(原老师)现在我们就用所学的数学知识解决生活中的问题。
(四)练一练,巩固提升。 1.出示例1。
口答。师板书,我们学习了公式,可以用公式代入来算。板演。
设计意图:通过基本练习,学习公式代入法,巩固所学的知识,使学生感受到数学的现实意义,提高解决数学问题的能力。
2.出示学校附近停车场图。你能从这幅图中找到平行四边形吗?你能提出什么问题?
生:停车位是平行四边形,绿地是平行四边形。生:一个停车位的面积是多少?绿地的面积是多少? 设计意图:通过现实的情境,感受数学源于生活,提高提出问题、解决问题的能力。第一题再次巩固平行四边形面积的计算方法;第二题有多余条件的干扰,并且突出平行四边形面积计算时底和高必须是对应的。在此基础上,根据面积求高的变式练习使学生感受逆向计算的方法,总结平行四边形底和高的求法,举一反三,提高解决问题的能力。
3.下面四个平行四边形的面积相等吗?
设计意图:再次在变与不变中感受,等底等高的平行四边形的面积相等,面积相等的平行四边形的形状可能不同。
(五)总结延伸
师:这节课我们通过动手操作,动脑思考,利用转化的方法研究出了平行四边形的面积公式。上课之初,我们还知道平行四边形和三角形也可以互相转化,三角形的面积我们能不能用这种方法研究呢?(能)下课后有兴趣的同学可以
试试看哦!其实这种转化的数学思想将伴随我们一生的学习、工作和生活。
《平行四边形的认识》教学设计【第四篇】
[教学目标]
1、知识与技能
直观地认识平行四边形
学会从各种平面图或实物中辨认平行四边形
培养初步的观察能力,空间观念和动手能力。
2、过程与方法
让学生在观察、操作、合作交流中探索新知
3、情感态度与价值观
渗透事物之间相互联系及转化的辩证唯物主义思想。
[教学重点]
引导学生直观的认识平行四边形
[教学难点]
引导学生通过直观感知抽象出平行四边形。
[教学关键]
在教学过程中,尽可能为学生提供观察、操作的机会,丰富学生的感性认识,使学生的感性认识升华为理性认识。
[教学方法]
演示法、观察法、操作法等。
[教具准备]
多媒体课件、可拉动的长方形框架、钉子板,方格纸
[学具准备]
可拉动的长方形框架,一张长方形的纸。
[教学过程]
一、复习引入
游戏引入(出示课件)
以“七个小矮人”中的开心果讲游戏规则,老师先发一些基本图形给学生,有三角形、圆形、长方形、正方形、平行四边形等,叫到什么图形的时候,大一部分同学就起立把图形举高让大家看,最后,只剩下平行四边形没有叫着,揭示课题:今天我们就来认识这一种新的四边形。
板书课题:平行四边形
二、探索新知
1、观察感知(课件展示)
教学例1:课件出示生活中的实物图形,引导学生观察在观察的基础上进行小组交流讨论,这些图形都有什么共同点?
交流抽象:在小组讨论的基础上进行全班交流,教师引导学生观察发现:以上的图形都含有,指出这种图形就是我们今天要认识的。平行四边形,课件出示平行四边形的图和文字。
2、操作感知
教学例2
拉一拉:
⑴你能把长方形变成平行四边形吗?你是怎样变的?捏住长方形的两个对角,向相反的方向拉动,这样就变成了一个平行四边形。在学生独立操作、感知的基础上进行小组合作、交流:长方形有什么变化?
全班交流时引导学生发现:通过拉动长方形框架使它变成了平行四边形,在拉动的过程中,四条边的长短不变,所以平行四边形的对边相等;四个角变了,原来是四个直角,拉成平行四边形后,四个角分别变成了两个锐角和两个钝角。
⑵说一说,长方形和平行四边形有什么区别?(长方形的四个角都是直角,平行四边形的角不是。初步理解长方形是一种特殊的平行四边形)
⑶说一说平行四边形有什么特点?
平行四边形有四条边,对边相等,有四个角,对角相等。
三、动手实践
1、围一围:
你能根据平行四边形的特点,在钉子板上围一个平行四边形吗?试试看
2、涂一涂:
把下面的图形是平行四边形的涂上自己喜欢的颜色(106页课堂活动的第2题)
3、剪一剪
⑴请在长方形纸上剪出一个平行四边形。(注意先要照着书上的方法,对折,再对折,然后把其中的两个长方形再对折,剪去其中的一个三角形。教师要引导学生怎样折纸)
四、知识拓展
让学生用七巧板拼摆出自己喜欢的各种图形,发展他们的创新思维和求异思维,同时也培养学生的空间观念。
五、全课小结
通过我们的观察、动手操作、小组合作等,我们已经知道了平行四边形的奥秘,你有什么收获?还有什么不懂得地方?
其实生活中无处不有我们的数学问题,只要我们做生活的有心人,你就会真正成为数学和生活的主人?
[板书设计]
平行四边形
有四条边,对边相等
有四个角,对角相等