数学《指数与指数函数》教案精编4篇
【前言导读】这篇优秀教案“数学《指数与指数函数》教案精编4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
教学设计示例1
课题
《指数函数》说课稿2
尊敬的评委老师,大家好,我是今天的5号考生,今天我说课的题目是《指数函数》。
总结语
为了更好的呈现我的教学思路,我将以教什么、怎么教以及为什么这么教为思路,具体从教材分析、教学目标分析、学情分析、教法、学法以及教学过程等几个方面展开我的说课。
教材分析
教材是课程标准的具体化,是课堂知识呈现的载体,对于教材的深入理解是上好一堂课前提。本课选自人教版,高中数学必修一第二章第六节。在漫长的高中数学学习的过程中,函数的学习贯穿始终。从教材的书写逻辑上看,之前的教材内容已经对于函数的一般性质进行了排布。而本节课指数函数的学习则对接下来对数函数等复杂函数的深入学习奠定了坚实的基础。可以说,指数函数的学习对于高中函数的学习起到了承上启下的重要作用。
学情分析
新的学生观告诉我们,我们要在课堂中充分发挥学生的主体地位,因此对于学生的情况了解也是十分重要的。从思维层面上看,高中的学生已经具备了比较成熟的抽象逻辑思维能力,有着较强的理解力,这对于我们课堂的开展是十分有帮助的。而这个阶段的学生好胜心比较强,容易产生负面情绪,这对于我们课堂的教学也带来了一定的挑战。从经验上看,在之前的学习中,学生已经对于“指数”“函数”等概念有了深刻的认识,为本节课程的开展提供了帮助,而指数函数相对比较抽象,对于学生的学习、老师的教授都提出了较高的要求,因此合理的教法学法选择显得尤为重要。
教学目标
教学目标是教育教学活动的出发点和依据,结合新课改的思想和新课标的要求,本节课我所制定的三维教学目标如下:
知识与技能目标:掌握指数函数的概念,图像性质;能够利用指数函数的概念解决实际问题。
过程与方法目标:通过分组讨论参与发现的过程,培养学生观察,联想,类比,猜测,归纳的能力。
情感态度与价值观目标:通过教学互动,促进师生情感,激发学生的学习兴趣,提高学生的抽象概括,分析,综合的能力,培养学生联系观点看问题,领会数学科学的应用价值。
而本节课,我将重难点确立为:指数函数的图像和性质,以及它与底数a的关系。
教学教法
正如苏霍姆林斯基所说:只有能够激发学生去进行自我教育的教育,才是真正的教育。在满足学习者需求的基础之上,我将制定适合本阶段学生的教法来展开教学,以体现教师的主导性。分别以图片展示、讨论、讲授、参与练习等相结合的方式进行教学。同时我将采用诱思探究和自主学习相结合的方式,以激发学生的学习主动性,充分地体现学生的主体地位。
教学过程
以上所有的准备都是为了更好的呈现我的课堂,下面来谈一谈我对于教学过程的设计。
首先创设情境,导入新课我将用电脑展示两个实例:计算机价格下降问题和生物中细胞分裂的例子。我会请同学们仔细观察并分组讨论,分别写出计算机价格y与经过月份x的关系以及细胞个数y与分裂次数x的关系,用所学知识结合探究法,分析出指数函数底数讨论的必要性以及分类方法。通过这样的实例,可以很好地激发学生的学习兴趣,培养学生思维的主动性,为接下来的学习做好准备。
其次启发诱导,探求新知我会给出两个简单的指数函数,并要求学生画出它们的图像,并在准备好的小黑板上规范地画出这两个指数函数的图像,同时板书出指数函数的性质。同学们通过动手,促进学生对本课内容的理解学习,并借助小黑板演示其规范性。利用多媒体将指数函数的图像加以展示,利于观察图像总结所学知识的性质,也能对于接下来的知识点导入起到自然结合的作用。当然学生通过我的引导交流讨论会很快画出两个简单的指数函数,归纳出函数的性质涉及方面,总结出它的性质。
接着巩固新知,反馈回授我会板书出例一及例二第一问,并介绍相关考古知识,本着实践为主的原则,完成学生学习:实践到认识再到实践的过程。通过练习实现教师的再指导和学生的渐进式提高。这个环节介绍的化学知识在考古中的应用,这样的设计既开拓了学生的视野,又为下一步学习:计算分期付款的利率等问题埋下伏笔,因此学生能够了解解题的规范步骤,并完成例题,拓展视野体会数学的应用价值。紧接着我会带领学生进行归纳,总结升华我会将同学们进行分组讨论、探究,引导学生对指数函数的知识进行梳理和深化认知。知识与技能目标设置分组pk机制,引导学生对课堂知识进行分类讨论、数形结合等数学方法的归纳。最后我会布置课后作业以帮助学生巩固练习,温故而知新。
板书设计
当然一堂完整的课程离不开简洁明了的板书设计,我的板书设计如下:在黑板中间的正上方,我会写下今天的课题:指数函数,我会在黑板的中间摆上小黑板以展示其规范性。在黑板的左面,我会在练习过程中写下今天练习的,计算步骤。黑板的右面,我会写下例题一以及例题二的第一问。这样的设计,可以帮助学生更好地学习本课的内容。以上就是我所有的授课内容,感谢各位老师的聆听。
数学《指数与指数函数》教案3
教学目标:
1.进一步理解指数函数的性质;
2.能较熟练地运用指数函数的性质解决指数函数的平移问题;
教学重点:
指数函数的性质的应用;
教学难点:
指数函数图象的平移变换。
教学过程:
一、情境创设
1.复习指数函数的概念、图象和性质
练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为 .若a1,则当x0时,y 1;而当x0时,y 1.若00时,y 1;而当x0时,y 1.
2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?
二、数学应用与建构
例1 解不等式:
(1) ; (2) ;
(3) ; (4) .
小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围。
例2 说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:
(1) ; (2) ; (3) ; (4) .
小结:指数函数的'平移规律:y=f(x)左右平移 y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移 y=f(x)+h(当h0时,向上平移,反之向下平移).
练习:
(1)将函数f (x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数 的图象。
(2)将函数f (x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数 的图象。
(3)将函数 图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是 .
(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是 .函数y=a2x-1的图象恒过的定点的坐标是 .
小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口。
(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?
(6)如何利用函数f(x)=2x的图象,作出函数y=|2x-1|的图象?
小结:函数图象的对称变换规律。
例3 已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1-2x,试画出此函数的图象。
例4 求函数 的最小值以及取得最小值时的x值。
小结:复合函数常常需要换元来求解其最值。
练习:
(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于 ;
(2)函数y=2x的值域为 ;
(3)设a0且a1,如果y=a2x+2ax-1在[-1,1]上的最大值为14,求a的值;
(4)当x0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围。
三、小结
1.指数函数的性质及应用;
2.指数型函数的定点问题;
3.指数型函数的草图及其变换规律。
四、作业:
课本P55-6,7.
五、课后探究
(1)函数f(x)的定义域为(0,1),则函数 的定义域为 .
(2)对于任意的x1,x2R ,若函数f(x)=2x ,试比较 的大小。
教学过程4
1、 理解指数函数的定义,初步掌握指数函数的图象,性质及其简单应用。
2、 通过指数函数的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。
3、 通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。