数学《指数与指数函数》教案精彩4篇
【阅读指引】阿拉题库网友为您分享整理的“数学《指数与指数函数》教案精彩4篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
教学重点和难点【第一篇】
重点是理解的定义,把握图象和性质。
难点是认识底数对函数值影响的认识。
《指数函数》说课稿【第二篇】
教学目标:
进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。
教学重点:
用指数函数模型解决实际问题。
教学难点:
指数函数模型的建构。
教学过程:
一、情境创设
1.某工厂今年的年产值为a万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为 万元,后年的产值为 万元.若设x年后实现产值翻两番,则得方程 。
二、数学建构
指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等
递增的常见模型为=(1+p%)x(p>0);递减的常见模型则为=(1-p%)x(p>0)。
三、数学应用
例1 某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式。
例2 某医药研究所开发一种新药,据检测:如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克),与服药后的时间t(小时)之间近似满足如图曲线,其中OA是线段,曲线ABC是函数=at的图象。试根据图象,求出函数= f(t)的解析式。
例3 某位公民按定期三年,年利率为%的方式把5000元存入银行.问三年后这位公民所得利息是多少元?
例4 某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x,本利和(本金加上利息)为元。
(1)写出本利和随存期x变化的函数关系式;
(2)如果存入本金1000元,每期利率为%,试计算5期后的本利和。
(复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法)
小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算.这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的积极性,往往定期现年的利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式.比如“本金为a元,每期还b元,每期利率为r”,第一期还款时本息和应为a(1+p%),还款后余额为a(1+p%)-b,第二次还款时本息为(a(1+p%)-b)(1+p%),再还款后余额为(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次还款后余额为a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b.这就是复利计算方式。
例5 2000~2002年,我国国内生产总值年平均增长%左右.按照这个增长速度,画出从2000年开始我国年国内生产总值随时间变化的图象,并通过图象观察到2010年我国年国内生产总值约为2000年的多少倍(结果取整数)。
练习:
1.(1)一电子元件去年生产某种规格的电子元件a个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年增长p%,试写出此种规格电子元件的年产量随年数变化的函数关系式;
(2)一电子元件去年生产某种规格的电子元件的成本是a元/个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年下降p%,试写出此种规格电子元件的单件成本随年数变化的函数关系式。
2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经3小时后,这种细菌可由1个分裂成个 。
3.我国工农业总产值计划从2000年到2020年翻两番,设平均每年增长率为x,则得方程 .
四、小结:
1.指数函数模型的建立;
2.单利与复利;
3.用图象近似求解。
五、作业:
课本P71-10,16题。
教学目标【第三篇】
1。使学生掌握的概念,图象和性质。
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。
(3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象。
2。 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。
3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。
《指数函数》说课稿【第四篇】
一、说教材
1、《指数函数》在教材中的地位、作用和特点
今天说课的内容为“指数函数”第一课时。它是在学习指数概念和幂函数的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础。所以指数函数起到了承上启下的作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算、股市的涨跌、服饰的打折和化学中对放射性物质的变化研究等方面,因此学习这部分知识还有着广泛的现实意义与在专业知识中的应用作用。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。
2、教学目标、重点和难点
通过初中学段的学习和职业高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:
知识维度:初中已经学习了正比例函数、反比例函数和 一次函数,上册第三章又进一步学习了函数的概念及其通性,并对一次函数、二次函数作了更深入研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
能力维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究指数函数的性质做好准备。
素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。
(1)教学目标
知识目标:
①了解指数函数模型的实际背景,认识数学与现实生活、其他学科的联系。
②掌握指数函数的概念。
③掌握指数函数的图象和性质。
能力目标:
①渗透数形结合的基本数学思想方法。
②培养学生观察、联想、类比、猜测、归纳的能力。
情感目标:
①在学习的过程中体会研究具体函数及其性质的过程和方法,如体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题。
②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力。
(2)教学重点和难点
教学重点:指数函数的图象和性质。
教学难点:指数函数的图象性质与底数a的关系。
(3)教学关键:
从实际出发,使学生在获得一定的感性认识和基础上,通过观察、比较、归纳提高到理性认识,以形成完整的概念;在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
二、教法与学法指导
1、学法指导
由于职高学生大部分数学基础较差,理解能力、运算能力、思维能力等方面参差不齐,同时学生学好数学的自信心不强,学习积极性不高,厌学情绪严重。针对实际情况,考虑到学生非智力因素的影响,我主要在以下几个方面做了尝试:
(1)激发学生的求知欲和学习积极性。从学生感兴趣的生活实例着手,激发学生的学习兴趣,指导学生积极思维,主动获取知识。
(2)领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个职业高中的数学学习。
(3)在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。
(4)注意学生的个体差异。利用小组合作来帮助后进的学生,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。
2、教法选择
(1)本节课采用的方法有;启发发现法、课堂讨论法、多媒体教学法
(2)采用这些方法的理论依据:为了调动学生的学习积极性,使学生变被动为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,借助电脑,演示作图过程以及图像变化的动画过程,新技术、新工具、新模式给了学生以新的感受,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。(有条件的可以安排在机房上课,让学生也利用函数作图器作图)
三、教学设计
在设计本节课的教学过程中,本着遵循学生的`认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。
1、创设情景、导入新课
教师活动:
①用电脑展示两个实例,第一个是生物中细胞分裂问题(某种细胞分裂时由1 个分裂成2 个,2个分裂成4个,一个这样的细胞分裂 x 次后,得到的细胞个数y与x有怎样的函数关系?),第二个是放射性物质变化的例子(一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,求经过多少年,剩留量是原来的一半,结果保留一位有效数字)。
②组织学生思考、分小组讨论所提出的问题,注意引导学生从定义出发来解释两个问题中变量之间的关系。
③引导学生把对应关系概括到形式。
学生活动:分别写出细胞个数y与分裂次数x的关系式和剩留量y与经过的年数x的关系式;
设计意图:
①通过生活实例充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,也为引出指数函数的概念做准备,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;
②由具体数字抽象概括出指数函数y=ax的模型,为研究指数函数做准备;
③两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。
2、启发诱导、探求新知
(1)指数函数概念的引出
教师活动:
①引导学生观察这两个函数,寻找他们的特征
②请学生思考对于底数a是否需要限制,如不限制会有什么问题出现
③引导学生观察指数函数与幂函数在概念上的区别。
学生活动:
①学生独立思考并回忆指数的概念;
②解释这两个问题中变量间的关系为什么构成函数,从而归纳指数函数的概念;
③理清指数函数与幂函数在概念上的区别。
设计意图:
①引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点;
②注意提示底数的取值范围,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。
③将指数函数与幂函数在定义上进行区别,加深了对指数函数概念的掌握。
(2)研究指数函数的图象
教师活动:
①给出两个简单的指数函数 和 ,并要求学生画它们的图象。
②在准备好的小黑板上利用列表描点法规范地画出这两个指数函数的图象。
③利用函数作图器和几何画板作图。
学生活动:
①思考画函数图象的方法有哪些?
②画出这两个简单的指数函数图象。
③让学生利用计算器或计算机来画。
设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”或“几何画板”准确作图,既可以培养学生的学习兴趣也可以使图象更精确。