首页 > 学习资料 > 教案大全 >

近似数(精选5篇)

网友发表时间 263942

【路引】由阿拉题库网美丽的网友为您整理分享的“近似数(精选5篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

近似数【第一篇】

教学内容:    教材第126~127页例1、练一练,练习二十六第1~5题。

教学目标 :

1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数。

2.使学生初步了解求一个小数的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。

3.进一步培养学生运用旧知和类比推理的能力。

教学重点:求一个小数的近似数。

教学难点 :使学生能够区别求近似数与改写求准确数的方法。

教具准备:    小黑板,投影。

教学步骤 

(一)铺垫孕伏

1.把下面各数省略万后面的尾数,求出它们的近似数。(卡片出示)

986534 58741 31200

50047 398010 14870

2.下面的□里可以填上哪些数字?

32□645≈32万 47□05≈47万

学生填完后,说一说是怎么想的。

(二)探究新知

1.导入  新课:

我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:量得大新的身高是米,平常不需要说得那么精确,只说大约米或米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题:求一个小数的近似数)

2.教学例1:求一个小数的近似数。

(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数。

(2)出示例1。

保留整数、一位小数和两位小数,它的近似数各是多少?

教师提问:保留整数,要看哪一位?怎样取近似数?

使学生明确:保留整数,就要看十分位,十分位满5,向前一位进一,求得近似值数5.

学生讨论:保留一位小数和两位小数,要看哪一位?怎样取近似数?

使学生明确:保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数 保留两位小数就要看千分位,千分位上不满5,舍去。

分组讨论:保留一位小数十分位上的“0”能不能去掉?为什么?

教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……

(3)讨论分析:和5数值相等,它们表示精确的程度怎样?

①教师出示线路图:(投影出示)

②引导学生小组讨论交流:

使学生明确保留一位小数是,原来的长度在与之间。保留整数为5,原来的准确长度在与之间,所以比5精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。

(4)小结:

教师提出问题:求一个小数的近似数应注意什么?

引导学生讨论知道:求一个小数的近似数要注意两点:

①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是舍还是入。

②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。

(5)“练一练”分组合作学习。

(三)巩固发展

1.填空:

求一个小数的近似数,要根据需要用(         )法保留小数数位。保留整数,表示精确到(        )位;保留一位小数表示精确到(         )位;保留两位小数表示精确到(        )位……

2.填空:

近似数的结果一般地说要比6精确。因为表示精确到了(       )位,6表示精确到了(      )位,所以后面的“0”不能丢掉。

3.练习二十六第1题。

按照四舍五入法写出表中各小数的近似数。

保 留

整 数

保    留

一位小数

保   留

两位小数

保    留

三位小数

4.练习二十六第4、5题

学生口答。

(四)全课小结

今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似。要用“四合五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。

(五)布置作业

练习二十六第2、3题。

近似数【第二篇】

教学内容:新课程标准实验教科书 人教版五年级上册 第10页例6及后做一做、练习二1—3题。

教学目标

1.知识与技能:掌握用“四舍五入法”取积的近似数。

2.过程与方法:让学生应用迁移的方法来求积的近似数。

3.情感、态度与价值观:培养学生能根据实际需要正确求积的近似数。

教学重点

学生能用“四舍五入法”取积的近似数。

教学难点

学生能根据实际需要正确求积的近似数。

教学过程:

一、复习。

1、口算:××××

×××-

2、把下面各数精确到百分位。

≈ ≈ ≈

二、新授

1.教学教材第10页例题6.

(1)出示例题6:

(2)分析:题目的已知条件和问题分别是什么?怎样列式计算?

(3)生尝试练习。

(4)抽生板演:×45≈(亿个)

× 45

245

196

(5)分析订正:大家有什么不明白的地方吗?(学生质疑或师提问:)

①为什么用乘法计算?(根据小数乘整数的意义:求的45倍用乘法计算。)

②结果保留一位小数约是是怎么来的?(根据四舍五入法:看小数部分的第二位小于五,就从第二位开始省略掉。)

(6)小结:当我们求出的积的小数位数比较多,我们可以根据需要,按“四舍五入法”保留一定的小数位数。

三、练习

1、完成第10页“做一做”。

生完成在练习本上,抽生板演,并说出四舍五入的方法。

2、课堂作业:第13页练习二1、2、3题。

3、拓展练习:王敏家的小汽车平均每千米耗油升,她家距单位约15千米,王敏每月(按21天算)上、下班(每天按往返一次算)要消耗多少升汽油?如果汽油价格每升元算,王敏家每月这一项要支出多少钱?(得数保留整数)

近似数【第三篇】

求近似数

教学内容

义务教育课程标准实验教科书(西师版)四年级上册第22页例2,课堂活动的第2题及练习三的第4、5题。

教学目标

1.让学生经历探索求近似数的方法的过程,会用“四舍五入”法求近似数。

2.让学生明确学习和掌握用四舍五入法求近似数的重要性,加强数学与生活的联系。

3.培养学生的主体意识和探索精神。

教学重点

掌握求近似数的方法

教学难点

正确选择“四舍法”或“五入法”

教学过程

一、引入新课

教师:这学期,我们班转来了几位新同学,为了增进大家的了解,谁愿意用数据向他们介绍一下自己或者我们学校的情况?

学生1:我今年10岁,身高大约140厘米。

学生2:我的体重在36千克左右,我家有3个人,爸爸妈妈每月的收入大约1万元。

学生3:我们学校有学生2125人。

教师:在刚才介绍的这些数据中,哪些是准确数?哪些是近似数?

学生:10、 3、2125是准确数,大约140、36千克左右、大约1万是近似数。

教师:在我们的生活中,有时不需要也不可能得到准确数,这时就要用到近似数,比如:20xx年重庆市总人口约3100万,中国大陆总人口约13亿等都是近似数。那么,怎样求一个数的近似数呢?

[点评:体现数学的现实性。利用学生身边现有的、熟悉的学习材料引入教学,让学生在相互介绍的过程中,感受到近似数在生活中的存在和广泛应用,突出其学习价值。]

二、学习新知

1探索“四舍五入”法。

(出示:534607)

教师:这是一个准确数,如果改成一个近似数,大约等于多少?

学生1:约等于五十三万四千六百。

学生2:也可以约等于五十三万四千。

学生3:还可以约等于五十三万、五十万。教师:了不起,还写成了用“万”作单位的数,你们认为“五十三万”和“五十万”谁比较合适?

学生1:我认为五十万比较合适,因为这样的近似数比较简单。

学生2:我不同意,我认为五十三万比较合适,因为五十万与准确数相比,比准确数少了三万多,相差太多,而五十三万与准确数很接近,只相差四千多。

教师:五十四万怎么样?

学生1:不行,与准确数相差五千多了。

学生2:我发现,只要千位上的数没有达到五千,就可以直接去掉万位后面的数,约等于五十三万。

学生3:对,当千位上的数达到或者超过五千,就可以在万位上增加1,再把万位后面的尾数舍去,约等于五十四万。

(出示:38290)

教师:按照大家刚才讨论出的办法,38290约等于多少万?

学生:千位上是8,满了5,所以,万位上增加1,约等于4万。

2.归纳方法。

教师:同学们表现很出色,下面请同学们以小组为单位讨论讨论,整理出“省略万位后面的尾数求近似数”的方法。

(学生分组讨论,然后全班交流)

学生:省略万位后面的尾数求近似数,先看千位上的数,千位上的数小于5,就把万位后面的尾数直接舍去,千位上的数是5或者大于5,就向万位上进1,再把后面的尾数舍去。

教师:我们把这种方法叫做“四舍五入”法。

(学生看书第22页例2,质疑)

[点评:“学生是数学学习的主人,教师是数学学习的组织者、引导者、合作者”。在新知识的学习过程中,学生围绕“怎样用近似数表示”这一问题展开了大胆的、富有个性的讨论,自主探索出了“四舍五入”法,知识的建构水到渠成。而教师的点拨——“谁比较合适”对学生的进一步探索起了重要的作用。]

3.练习。

(1)教科书第22页的试一试。

教师:用“四舍五入”法求近似数。

(学生独立完成,评讲)

(2)教科书第23页的课堂活动第2题。

师生活动:老师出示卡片,学生说近似数。

师生活动:同桌活动,一人写数,一人说近似数。

4.扩展。

(出示:省略153904270亿位后面的尾数,它的近似数是多少?)

教师:先回忆省略万位后面的尾数求近似数的方法,想一想,这个问题怎样解答?

(学生独立思考,尝试解答,再交流)

学生1:省略万位后面的尾数求近似数,看千位上的数“四舍五入”;省略亿位后面的尾数求近似数,就该看千万位上的数“四舍五入”,约等于2亿。

学生2:也就是省略哪一位后面的尾数求近似数,就看那一位后面一个数位上的数“四舍五入”。

[点评:引导学生充分利用已有经验,迁移类推到新知识的学习中。通过省略万位后面的尾数求近似数的方法,很容易得出省略亿位后面的尾数求近似数的方法,即“看后面一位四舍五入”。]

三、小结(略)

四、课堂练习

教科书第24~25页第4~6题(学生独立完成)。

(本案例由艾建萍提供)

近似数【第四篇】

教学目标 

(一)能正确地比较亿以内数的大小。

(二)能把整万的数改写成用万作单位的数。

(三)能正确地写出省略万后面尾数的近似数。

(四)培养学生比较、分析的思维能力,养成良好的学习习惯。

教学重点和难点

重点:亿以内的数位顺序。

难点:数位与位数的区别,省略万后面的尾数求近似数的方法。

教具和学具

投影片。

教学过程 设计

(一)复习准备

在下面○里填上>、<或=,再说一说你是怎样比较的?

999○1010 601○564 687○678

提问:

1.第一组两个数你是怎样比较的?

(三位数与四位数比,四位数一定比三位数大,因为三位数比一千小,四位数大于或等于一千。)

2.第二、三组数都是三位数,你是怎样比较的?

(两个三位数比较,百位上数大的那个数就大;百位上相同,十位上大的那个数就大。)

(二)学习新课

教师谈话:我们已经学过万以内数的比较大小,今天我们要学习的第一个内容,是亿以内数的比较大小。(板书课题:比较数的大小)

1.出示例5。

比较下面每组中两个数的大小:

(1)99864和101010。

提问:

①两个数各是几位数?

②五位数最高位是什么位?六位数最高位是什么位?

9万多与10万多来比较,谁大谁小?

(10万多比9万多大。)

所以99864<101010。(板书)

由此来看,五位数与六位数比较,谁比谁大?

(六位数比五位数大。)

③同学们推想一下,七位数与六位数比较呢?八位数与七位数比较呢?那么如果两个数的位数不同,怎样比较大小呢?

(如果两个数的位数不同,位数多的那个数大,七位数比六位数大,八位数比七位数大。)

出示第二组数:(2)356000和360000。

提问:

①这两个数各是几位数?

②这两个数都是六位数,位数相同的两个数怎样比较大小呢?先比较哪位上的数?

③两个数左起第一位十万位上都是3,怎么比较?

(两个数左起第一位十万位上都是3,看左起第二位,第一个数左起第二位万位上的5比第二个数万位上的 6小,所以356000<360000。)

教师把第一个数356000的万位改成6,即366000和360000。

④两个数左起第一位十万位上都是3,万位上都是6,怎么比较呢?

(两个数左起第一位十万位上都是3,第二位万位上都是6,就要看第三位。第一个数第三位千位上是6,第二个数千位上是0,所以366000>360000。)

启发学生逐步总结出完整的比较数的大小的方法。

提问:

①比较两个数的大小有几种情况?位数不同怎么比?

②如果位数相同怎么比?先要从哪一位比?如果左起第一位上的数相同,怎么比呢?

指导学生阅读课本中关于比较两数大小方法的结语,并提问学生结语的最后为什么有省略号“……”,表示什么意思?举例说明。

教师说明:“位数”是指一个数用几个数字写出来的(最左端的数字不能是0),有几个数字就是几位数。如99864是五位数,101010是六位数。“左起第一位”是数位,数位是指一个数中的数字所占的位置。如 99864左起第一位是“9”,“9”是在万位上,101010左起第一位是“1”,“1”在十万位上。“数位”与“位数”是不一样的。

练一练

(1)比较每组中两个数的大小,说说是怎么比的?

70080○70101 98965○100000

(2)按照从小到大的顺序排列下面各数。

40400 400400 44000 50004

指导学生做第(2)题时,先比较位数的多少,再把位数相同的几个数进行比较,也可以把这四个数排成一竖行,相同数位对齐。如:

可以看出:400400最大,40400最小。再把它们从小到大编成序号,按序号进行排列:40400<4400<50004<400400就不容易错。

2.教学把整万的数改写成用“万”作单位的数。

出示50000,让学生读数。

教师指出:这是一个整万的数。像这样整万的数,写成用“万”作单位的数比较简便。

提问:万位在右起第几位?整万的数万位后面有几个0?

把整万的数改写成用“万”作单位的数,只要把后面的四个0去掉,加上一个万字就行了。例如 50000写成 5万,或 50000=5万。又如 1800000写成 180万,或 1800000=180万。

练一练

把下面的数改写成用“万”作单位的数。

(1)250000

(2)3200000

(3)1994年我国共生产自行车40450000辆。

其中第(3)题强调单位名称,即4045万辆。

3.教学求近似数。

教师谈话:我们学过用四舍五入法求一个数的近似数,请同学们把下面各数千后面的尾数省略,求出它的近似数。

4926 9375

提问:省略千后面的尾数,根据哪一位上的数进行四舍五入?(根据百位上的数进行四舍五入。)

教师叙述:比万大的数,我们也可以用同样的方法来求它的近似数,这就是我们今天要学习的第二个内容。(板书课题:求近似数)

出示例6:把下面各数万位后面的尾数省略,求出它们的近似数。

(1)84380 (2)726310

出示第(1)题。提问:

(1)省略千后面的尾数时,是根据百位上的数进行四舍五入的,省略万后面的数,要根据哪一位上的数进行四舍五入?

根据学生的回答,教师强调,只要根据尾数的最高位,不要管尾数的后几位是多少。教师把千位上的4用方框框起来,即8(4)380。

(2)千位上的数不满5,怎么办?

根据学生的回答,把万后面的尾数舍去。教师板书:8(4)380≈8万。

(3)为什么中间用约等于符号连接起来,而不用等号?为什么整万的数用万作单位可以用等号连接起来?

出示第(2)题。

由学生说一说,根据哪一位上的数进行四舍五入?千位上的数比5大,该怎么办?教师板书:72(6)310≈73万。

练一练

把下面各数万位后面的尾数省略,求出近似数。

(1)63599 (2)709327

(3)1994年我国大学毕业生有637000人。

其中第(3)题要强调写单位名称,即637000≈64万人。

(三)巩固反馈

1.总结性提问:

(1)今天我们学习了哪些内容?

(2)怎样比较两个整数的大小?

(3)怎样把整万的数改写成以万作单位的数?

(4)怎样省略万后面的尾数,求出它的近似数?

2.发展性练习。

指导学生做练习三的第5题。

第(1)题指导性提问:

(1)49999前面一个数是多少?把它写出来。

(2)49999后面一个数是多少?把它写出来。

第(2)题指导性提问:

(1)最小的一位数是几?最大的一位数是几?

(2)最小的两位数是几?最大的两位数是几?

(3)最小的三位数是几?最大的三位数是几?

请独立填写练习三第5题第(2)题。

3.思考性练习。

下面的□里可以填哪些数字?

19□785≈20万 60□907≈60万

9□8765≈1000000 9□4765≈900000

先出示第一横排两道题,相邻两位同学讨论怎样填,然后全班交流。同学们可能填不全,最后由老师小结:第一道题,19万多的近似数是20万,说明千位上的数是5或比5大的数,方框里可填9,8,7,6,5;第二道题,60万多的数的近似数是60万,说明千位上的数是比5小的数,方框里可填0,1,2,3,4。第二横排则由学生独立来填。

4.课后练习:

练习三第1,3,4题。

课堂教学设计说明

本节课是在学生基本上掌握了亿以内数的读写方法以后,学习比较两个数的大小,把整万的数改写成以万作单位的数,用四舍五入法求近似数。虽然内容不十分集中,但与过去学过的旧知识联系紧密。因此,教学过程 的设计,采用帮助学生回忆有关的旧知识,引导学生探索出新方法。

本节课分三个层次,分两段提出课题。

第一层次是比较两个数的大小。由复习万以内数比较大小,引伸到比较亿以内两个整数的大小。分成位数不同和位数相同的两种情况,引导学生总结出比较两个整数大小的方法。

第二个层次是学习把整万的数改写成以万作单位的数。

第三个层次是学习求近似数,由复习省略千后面的尾数求出近似数,类推到省略万后面的尾数,求出近似数,归纳为根据尾数的最高位,进行四舍五入。这样引导,有利于培养学生的归纳推理能力。

根据本节课的内容,教学中采用边讲边练的形式,对课本中的练习进行适当地指导。最后的思考性练习对本节课所学的求近似数知识,起到进一步巩固和提高的作用。

板书设计 

比较数的大小求近似数

复习:

999○1010

601○564

687○678

4926≈5千

9375≈9千

例5 比较下面每组中两个数的大小。

99864和101010 356000和360000

99864<101010 356000<360000

50000=5万 1800000=180万

例6 把下面各数万后面的尾数省略,求出它的近似数。

(1)84380 (2)726310

8(4)380≈81万

72(6)310≈73万

近似数【第五篇】

设计理念:

培养学生收集数据、归纳总结知识和解决实际问题的能力。

教学内容:

北师大版11——12页《近似数》

教材分析:

近似数是在学生学习了本单元亿以内数的认识、读写和大数的比较和改写的基础上进行学习的,使学生进一步体会什么是近似数以及怎样求一个数的近似数,在本节知识学习中学生最容易出问题的环节是近似数的求法(位数的确定,是舍还是入),特别是需要进位时,前面是“9“的连续进位,应重视数位的确定和数字的入舍的教学。

教学目标:

1、结合具体情境使学生理解近似数在实际生活中的作用,能用四舍五入法求一个数的近似数。

2、提高学生收集信息的能力和解决实际问题的能力。

3、培养学生的数感,感受数学与生活的密切联系。

教学重点:

1、掌握用“四舍五入“法求一个数的近似数的方法。

2、正确进行近似数的改写。

教学关键:

找准数位,看清入舍,注意约等号。

教学准备:

课前收集的数据资料

教学过程:

一、认识近似数

(1)明确准确数和近似数。

师:同学们说一说你家里有几口人?我们这个班一共有多少同学?你们小组又有几个同学呢?这些数都是准确数吗?

师:那么我们伟大的祖国幅员辽阔,人口众多,哪位同学知道我国现在的人口有多少呢?我国的国土面积是多少呢?(生答)

师: 13亿是一个准确数吗?960万平方千米呢?

这样的数又是什么数呢?

点拨:像你家里有多少人,班里有多少同学等这样的数就是准确数。

像我国人口大约有13亿,我国国土面积大约有960万平方千米,这样的数就是近似数,一般来说近似数前面都要带上“大约”两个字。

(2)准确数与近似数的判别。

①学生以小组为单位把自己收集的数据按照准确数和近似数进行分类,并讨论这些数据所表示的实际意义。

②小组汇报,交流。

二、求一个数的近似数

提问:我们找到了这么多近似数,在生活中,人们经常使用哪些方法得到一个数的近似数呢?(学生根据生活经验思考、发言)

同学们提到用四舍五入法可以得到一个数的近似数,那么我们怎样理解四舍五入呢?怎样用四舍五入法求一个数的近似数呢?你愿意尝试一下吗?

请同学们打开课本11页看“填一填 说一说”

出示:某市在校学生今年共植树148264棵。

(1)四舍五入到十位:约148260棵;

(2)四舍五入到百位:约148300棵;

观察第一组数据小组讨论:①原数的个位是几?四舍五入后是几?它的十位有变化吗?说明什么?

观察第二组数据小组讨论:②原数的十位是几?四舍五入后十位是几?它的百位发生了什么变化?说明什么?

提问:通过以上观察分析你们从中有什么发现?(四舍五入到十位要找准什么位?入舍什么位?四舍五入到百位、千位、万位呢?)

学生尝试完成

四舍五入到千位:约( )棵;

四舍五入到万位:约( )棵。

知识反馈,强调重点。

小结:把一个数四舍五入到某一位,要看后一位,如果后一位够5,就向前一位入1(五入),尾数改写成“0”;如果后一位不够5,舍去(四舍),尾数改写成 “0”。在四舍五入时关键是要找准数位,看清入舍。

学生自学把一个数改写成以“万”为单位的近似数。

①出示:148264≈( )万

学生独立完成,同桌交流,说明方法。

(提示:①找准数位 ②用四舍五入法省略尾数并添写单位 ⑶用什么符号)

“≈”是约等号,读作“约等号”。

②学生两人结合互相出题,并检查。

引导学生总结把一个数改写成以“万”为单位的近似数的方法,强调约等号的使用。

三、作业设计

(1)判断题

①新绛县人口有32万。 ( )

②100000≈10万 ( )

(2)教材第12页第1题。

在做之前,可以先带领全班同学共同做“31777精确到万位是多少”这道题。学生说方法,然后独立完成后面的练习。做完之后,可以请学生把这些省市的森林面积按一定顺序排列。

(3)教材第12页第三题。(强调连续进位的方法)

(4)思维训练:括号里能填几?

49( )835≈50万 49( )835≈49万

(5)课后延伸

阅读13页数学知识,搜集信息,了解数的发展史。

四、课堂总结

今天我们学习了哪些内容?你有什么收获?

板书设计:

近 似 数

35人→准确数 约13亿→近似数

某市在校学生今年共植树148264棵。

四舍五入到十位:约148260棵;

四舍五入到百位:约148300棵;

四舍五入到千位:约( )棵;

四舍五入到万位:约( )棵。

148264≈( )万

“≈”是约等号,读作“约等号”。

相关推荐

热门文档

20 263942