苏教版六年级数学上册教案(4篇)
【导言】此例“苏教版六年级数学上册教案(4篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
六年级上册数学教案苏教版【第一篇】
一、教材内容
人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
二、教学目标
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
三、教学重、难点
认识负数的意义。
四、教学过程
(一)谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
(二)教学新知
1.表示相反意义的量
(1)引入实例
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了千克,小华轻了 千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流
……
2.认识正、负数
(1)引入正、负数
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”
(1)看一看、读一读
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。
哈尔滨: -18 ℃~-5 ℃
北京: -6 ℃~6 ℃
深圳: 15 ℃~25 ℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
5.练一练
读一读,填一填。
6.出示课题
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
苏教版六年级上册数学教案【第二篇】
解决问题的策略
教学内容:
教科书第89-90页的例1、“练一练”,练习十七第1题。
教学目标:
1.知识与技能:使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2.过程与方法:使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3.情感、态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
使学生掌握用“替换”的策略解决一些简单问题的方法。
教学难点:
使学生能感受到“替换”策略对于解决特定问题的价值。
教学过程:
一、复习导入。
1.说说图中两个量的关系可以怎样表示?
追问:还可以怎么说?
指出:两个量的关系,换一个角度,还可以有另外一种表示方法。
2.从图中你可以知道些什么?
(多媒体出示:天平的左边放上一个菠萝,右边放上四个香蕉,天平平衡。)
提问:现在老师在天平的左边放上两个菠萝,要使得天平平衡,右边可以放些什么?追问:还可以怎么放?
指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。
3.口答准备题:
(1)小明把720毫升果汁倒入9个相同的小杯,正好都倒满,每个小杯的容量是多少毫升?
(2)小明把720毫升果汁倒入3个相同的大杯,正好都倒满,每个大杯的容量是多少毫升?指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。
二、新授
(一)教学例1
1.读题
2.分析探索
提问:也同样是720毫升的果汁要倒入到杯子里,这题与刚才的两题相比较,有何不同之处?小结:刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。提问:那么还能像刚才一样用果汁总量去除以杯子总数,用720÷(6+1),可以这样计算吗?追问:那该怎么办?同桌先相互说说自己的想法。
3.交流
谈话:我们一起来交流一下,该怎么办?
追问:还可以怎么办?
小结:两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法——替换。(板书:替换)
4.列式计算
a:把大杯换成小杯
提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?
追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)
小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。
b:把小杯换成大杯
谈话:那反过来,把小杯换成大杯呢?(板书)
提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?
指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。
提问:这样做的依据又是什么?
指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)
提问:能求出每个大杯的容量吗?每个小杯呢?(板书)
5.检验
谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?
指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。
6.小结
谈话:解这题时,我们可以把大杯换成小杯来计算,也可以把小杯换成大杯来计算,那你觉得这两种方法之间有何共同之处?
指出:解这题的关键就是把两种杯子看成一种杯子。
(二)练习十七第1题
谈话:把这道题目,做在自己的草稿本上。(指名板演)
提问:把你的做法讲给同学们听。
追问:计算的结果是否正确,还要对它进行检验。就请你口答一下检验的过程吧!
(三)教学“练一练”
1.出示题目
谈话:自己先在下面读一遍题目。
2.分析比较
提问:这题与刚才的例1相比较有何不同之处?
指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。
提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。
3.学生试做
4.评讲
谈话:说说你是怎么做的?
指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。
提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。
追问:把小盒换成大盒也能做吗?把原来的5个小盒换成5个大盒,现在这7个大盒中,一共装了多少个球?
指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。
谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。
5.检验
谈话:同桌相互检验一下刚才计算的结果是否正确。
6.小结
提问:解这题时你觉得哪一步是关键?
指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。
三、全课总结
谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)
提问:那你觉得在什么情况下我们可以用替换的方法来解题,能给大家来举一个例子说说吗?指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。
追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的数量。
四、巩固练习
1.用33元钱正好可以买12本练习本和8本硬面抄,练习本的单价是硬面抄的1/4。练习本和硬面抄的单价各是多少元?
2.一袋薯片比一盒巧克力便宜3元。妈妈买了8袋薯片和15盒巧克力,一共花了91元。薯片和巧克力的单价各是多少元?
3.练习十七2(机动)
解决问题的策略
——替换
把两种物体看成同一种物体
1.把大杯替换成小杯共需要9个小杯
720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)
80×3=240(毫升)240÷80=3(倍)
2.把小杯替换成大杯共需要3个大杯
720÷(1+2)=240(毫升)
240÷3=80(毫升)
课后反思:
由于课前对教材进行了深入的研究和学习,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也掌握了这一策略。
一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的知识解决问题能力的培养。
二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。
三、培养学生的探索精神和创新能力。首先,解决问题需要学生根据具体问题情境去主动探索,这本身就有利于培养学生的探索精神;其次,任何数学问题的解决,只有通过对已掌握的知识和方法的'重新组合并生成新的策略和方法才能实现问题的解决。所以这个过程又是一个创新的过程,它
不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。
苏教版六年级上册数学教案【第三篇】
可能性
教学内容:苏教版数学六年级上册第八单元---可能性
教学目标:
1.通过学习,使学生联系分数的意义,初步掌握用分数表示具体情境中简单事件发生的可能性的方法,会用分数表示可能性的大小。
2.认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。
3.进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。教学重点:认识客观事件发生的可能性的大小,能用分数表示可能性的大小。教学难点:能用分数准确表示可能性的大小。
教学过程:
一、创设情境,导入新课
1.用“一定”,“可能”,“不可能”说一句话。
(板书:一定、可能、不可能)
2.出示天气预报的情境:
长沙,11月22日,气温8-16摄氏度,降水概率10%。
问:同学们,看了这个天气预报,你明天出门时会不会带雨伞?为什么?(不会,因为降水概率只有10%,说明下雨的可能性比较小)
3.我们以前只知道用语言描述可能性,而这里的降水的可能性却用了10%这样一个具体的数,一个事情发生的可能性我们也可以用一个具体的数来表示,今天我们就来研究用数来表示可能性的大小。(板书课题:可能性)
二、探究与交流
1.同步体验。
(1)师出示袋子里有一个红球和一个黄球。
问:从中任意摸出一个球,摸到红球的可能性是几分之几?你怎么想的?(任意摸一个球,摸到红球的可能性是1/2。)
问:这里的2表示什么意思?1呢?
(2)老师在口袋中再放入一个绿球。
问:现在任意摸一个球,摸到红球的可能性是几分之几?
(任意摸一个球,摸到红球的可能性是1/3。)
师:都是任意摸一个球,摸到红球的可能性怎么会不同呢?这说明可能性的大小和什么有关?(可能性的大小和球的总数有关。)
板书:球的总数
(3)追问:如果要使摸到红球的可能性是1/5,口袋里该怎样放球?
如果要使摸到红球的可能性是1/20,口袋里该怎样放球?1/100呢?
(5)你有什么发现?分子都是1:表示红球个数;分母都是球的总个数;球的总数越多,摸到红球的可能性越小。
2.迁移与提升
教学例2。
(1)课件出示图。
师:在图中你看到了哪几张牌?
(2)师将6张牌反扣在黑板上。(师边说边演示)从中任意摸一张,摸到红桃a的可能性是几分之几?你是怎么想的?(一共有6张牌,红桃a有1张,摸到红桃a的可能性是1/6。)摸到黑桃a的可能性是几分之几?摸到其它牌的可能性呢?你能用一句话来概括一下刚才同学们所说的可能性吗?
(3)师:看了这6张牌,你还能提出关于可能性的数学问题吗?先自己想一想,然后把你的问题在小组里说一说。
(学生四人为小组活动,互相提问。)
师:大家来交流一下你们提出的问题。
你能具体地说一说,为什么任意摸一张,摸到3的可能性是1/3吗?
小结:从这里我们可以说明可能性的大小不仅和物体总数有关,还和某种物体的个数或张数有关。
(4)对比提升:去掉一张黑桃3,还剩五张,你能用分数表示哪些可能性?同桌互相说一说。
师:“任意摸一张,摸到黑桃的可能性是2/5”。你是怎么想的?能把你的想法和大家说一说吗?
师:如果老师说一个分数,你们能说出怎么拿吗?
师:课后同学们继续可以做这样的游戏,一人说分数,一人拿牌,比一比,谁的思维最敏捷。
三、实践和应用
1.练习十八第1题。
2.生活中的数学问题。课本第95页练一练。
追问:如果把转盘上的指针转动80次,在红色区域的次数一定是10次吗?
3.设计中奖规则:课件出示
超市将在元旦进行中大奖活动,购物满100元,可以到转盘上转1次指针,如果你是超市的老板,你会怎样设计中奖规则?学生凭生活经验阐述。
师提问:为什么大家都认为指针停在红色区域是一等奖?
(指针停在红色区域的可能性最小,有利于商家)
4.完成练习十八第六题。
同学们平时在游戏的时候要想最快决定两个人的胜负经常会用什么方法?(石头、剪刀、布)那你样想过没有,这种决定胜负的方式是否公平呢?
小芳和小娟在做这个游戏,他们获胜的可能性各是多少呢?
出示表格。
把表格填写完整。
回答问题。
我们以后在游戏时就可以用今天所学的知识来判断是不是公平。
四、全课总结,感受价值。
1.提问:今天大家学得开心吗?你有什么收获?
2.联系生活实际,体现用分数表示可能性的价值
师:在我们的生活中有很多时候都能用到用分数表示可能性的大小。比如:两个厂生产同一种产品,价格等其他条件都一样,甲厂的产品有百分之十返修,乙厂生产的产品有百分之一返修,你选择买哪个厂的?
师:生活中不确定得现象太多了,所以我们应该学会用变化的眼光看这个世界,学会根据可能性的大小去进行选择和判断。
小学六年级上册数学教案苏教版【第四篇】
1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
弄清单位“1”的量,会分析题中的数量关系。
分析题中的数量关系。
多媒体课件
一、旧知铺垫(课件出示)
小红家买来一袋大米,重40千克,吃了,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新知探究
1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?
(1)吃了是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:
买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。
解:设买来大米x千克。
x-x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的
(3)学生试画出线段图。
(4)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(5)根据等量关系式解答问题。
(6)解:设航模小组有χ人。
χ+χ=25
(1+)χ=25
χ=25÷
χ=20
答:航模小组有20人。
三、课堂小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、当堂测评
练习十第4、12、14题。
学生独立完成,教师巡回指点,有困难的学生及时请教优秀学生,做到“一帮一、兵强兵”。