首页 > 学习资料 > 教案大全 >

小学数学教研计划思维导图(4篇)

网友发表时间 436770

【导言】此例“小学数学教研计划思维导图(4篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

初二数学第一章知识点【第一篇】

一、全等形

1、定义:能够完全重合的两个图形叫做全等图形,简称全等形。

2、一个图形经过翻折、平移和旋转等变换后所得到的图形一定与原图形全等。反之,两个全等的图形经过上述变换后一定能够互相重合。

二、全等多边形

1、定义:能够完全重合的多边形叫做全等多边形。互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

2、性质:

(1)全等多边形的对应边相等,对应角相等。

(2)全等多边形的面积相等。

三、全等三角形

1、全等符号:≌。如图,不是为:△ABC≌△ABC。读作:三角形ABC全等于三角形ABC。

2、全等三角形的判定定理:

(1)有两边和它们的夹角对应相等的两三角形全等。(即SAS,边角边)

(2)有两角和它们的夹边对应相等的两三角形全等。(即ASA,角边角)

(3)有两角和其中一角的对边对应相等的两三角形全等。(即AAS,角角边)

(4)有三边对应相等的两三角形全等。(即SSS,边边边)

(5)有斜边和一条直角边对应相等的两直角三角形全等。(即HL,斜边直角边)

3、全等三角形的性质:

(1)全等三角形的对应边相等、对应角相等

(2)全等三角形的周长相等、面积相等

(3)全等三角形对应边上的中线、高,对应角的平分线都相等。

4、全等三角形的作用:

(1)用于直接证明线段相等,角相等。

(2)用于证明直线的平行关系、垂直关系等。

(3)用于测量人不能的到达的路程的长短等。

(4)用于间接证明特殊的图形。(如证明等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形和梯形等)。

(5)用于解决有关等积等问题。

七年级下册平行线与相交线知识点【第二篇】

1、同角或等角的余角相等,同角或等角的补角相等。

2、对顶角相等

3、判断两直线平行的条件:

1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 3)同旁内角互补,两直线平行。 (4)如果两条直线都和第三条直线平行,那么这两面三刀条直线也互相平行。

4、平行线的特征:

(1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 (3)同旁内角互补,两直线平行。

5、命题:

⑴命题的概念:

判断一件事情的语句,叫做命题。

⑵命题的组成

每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如

果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

6、平移

平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。

(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。

思维导图如何培养数学思维【第三篇】

借助思维导图的方式对学习自主学习、合作探究的能力进行培养。

随着新课改的实施以及深入,对教学的教学方式有了新的要求,需要将以往将课堂知识传授为主的形式进行改变,使学生能够积极主动的进行学习,并使学生能够掌握基础知识以及基本技能,最终使学生的价值观更具正确性。借助思维导图的形式进行教学,能够使学生的主体作用得到充分的发挥,使学生的学习积极性得以调动,并能够促进学生自学能力、理解分析能力以及归纳总结能力的培养。

在实际教学过程中,教师需要充分借助思维导图的作用,改变知识枯燥乏味的特点,使学生真正拥有学习的主动权,能够真正掌握学习方法。具体实施方法为:首先,教师应该将本单元的思维导图大纲进行制作,对学习进行讲解;其次,将学生分为小组形式,借助对教材以及资料的阅读,查阅网络上所搜集的资料,为课堂学习做好准备;第三,对学习进行指导帮助,使其应用协作学习的方式,将所查找到的资料借助MindManager软件将思维导图描绘出来;最后,在课程上,将各个小组的思维导图结果进行展示,由教师做出最后的评价,针对作品中的不足,学习应该积极改进。在此学习过程中,学生也能够牢固的掌握知识。

借助思维导图的方式,使学生分析解决问题的能力得到培养。

相关学者指出,知识 的意义体现在知识的用法当中,也就是说,知识的意义体现在学习分析解决问题的能力,是在实际生活中不断积累的。在学习中,学生借助数学知识对问题进行解决时必然会存在一定困难,此时就需要教师做好引导工作,借助思维导图的作用,使学生分析以及解决问题的能力得以培养。

此外,将信息技术与数学学科充分的进行结合,对思维导图进行有效的利用,就能够将数学知识间的条块分割状态转变,使其能够相互结合,形成一个整体,使知识能够相互融合,保证数学新课程的有效实施。

4提高小学生的数学思维技巧

从教学方法入手

首先,树立以思为学的目标。正确的目标方向是教学成功的开始。作为一名高素质的教师,我们要树立以思为学的目标,而不是为学而学。在具体的教学过程中,我们要减少刻板繁重的家庭作业,多布置一些思维型的题目让学生去思考,去自主探讨,而不是将学生淹没在繁重的作业中去。 其次,以感性思维引导学生。由于小学生目前的思维状态是感性多于理性,而抽象思维的提高又是一个极为缓慢的过程,所以作为一名合格的人民教师,我们需要在这个过程中运用更为感性直观的方法去引导学生去理解那些抽象的概念、公式、方法。

从而在我们有意识的引导中逐步提高学生的抽象思维能力。 最后,形成奖励竞争机制。小学生的学习是以引导型为主的,这种有意识的引导需要靠一定的竞争奖励机制来完成,因为这样可以激发学生的学习动力,这种动力正是学生自我思考与探讨需要的条件。只有在这种机制中,学生才会在我们有效的引导中可以不断地去思考、去探讨,从而提高他们自己的抽象思维能力。

培养学生的实践操作能力

只有学生动手参与学生才能记得牢,因为在学生的操作过程中不仅是身体的动作,而是与大脑的思维活动紧密联系在一起的,大脑支配人体的各个器官进行协调的工作。操作中学生不但要观察、分析、比较、还要进行抽象,概括,从中发展思维。如教学“长方体和正方体体积的认识”时,我让学生通过观察,触摸,数一数长方体有几个面,学生用多种方法数出长方体有6个面。

这时,我继续追问:“这些面有什么特点?”有的学生用手摸,有的学生用尺量,有的把两块长方体拼在一起进行比较,有的学生把长方体相对的边沿着外框画在纸上比较,等等。通过动手实际操作初步感知长方体相对的面的大小、形状一样,掌握了长方体的特征,通过实践探索得出的知识学生印象深刻,记得扎实,正是这样学生在思维中操作,在动手中思维,并通过语言将过程“内化”为思维,使思维得到发展。

如何建立三年级数学思维导图【第四篇】

运用思维导图模式进行自我评价,帮助老师了解学生学习情况

思维导图具有一定的评价功能,老师可以利用思维导图对学生在课上的学习情况进评价,了解内一个学生的学习情况,为以后的在教学中采取的措施提供了有利的条件。通过培养学生用思维导图进行学习,可以有效帮助老师了解在讲解的过程中学生的领悟能力,给老师一个更直观的画面。

另外,学生在进行思维导图绘制的过程中,也是一个自我评价的过程,帮助学生能够很清晰地认识到自己在学习过程中的不足,在和老师讲解过程中的思维导图进行比较,这样就能使学生很快认识到自己在学习方面存在的问题,并加以改进,这样不仅仅激发了学生的学习热情,更是减少了学生的学习负担,使学生在轻松中提高自己的成绩,从而有效提高了数学的教学质量。

3如何训练孩子的数学思维能力

设计发散性问题进行思维能力的培养与训练

思维,特别是发散思维,在解决问题时,能够从不同的方面、不同的角度想出较多的解决问题的方法。所以,发散思维的培养是从相同的问题寻求不同的答案的思维过程和方法,合理地设计发散性问题,引导学生从各个角度进行分析,就可以培养和训练学生的思维能力。

如在学习“分数应用题”时,我设计了这样一个问题:“某校有住宿生人数为400人,外宿生人数相当于住宿生人数的3/5,外宿生人数是多少?”这种具有发散性的问题,教师不能只注重结果,而是要刻意的指导学生从不同的维度来探讨:①学校住宿生人数为400人,住宿生人数是外宿生人数的5/3,外宿生有多少人?②学校住宿生人数为400人,外宿生人数是全校总数的3/8,外宿生有多少人?③学校住宿生人数为400人,住宿生人数比外宿生人数多2/5,外宿生有多少人?④学校住宿生人数为400人,外宿生人数比住宿生人数少2/5,外宿生有多少人?在人教版小学数学教材中,像这种具有发散性思维的问题非常之多,我们只要加以分析、探索,发散性的思维训练从不同方向思考就能想象出多种可能。只有这样穿插运用才显出效果,才能使学生的发散性思维达到培养和训练。

设计变式性问题进行思维能力的培养与训练

在学习“分数应用题”时,引导学生分析以下三个方面的问题:①一个机器零件厂完成一批零件,第一工作区需要3天完成,第二工作区需要5天完成,如两个工区合作,那么一共需要几天能完成?②一客车从北京到上海需要3小时,一货车从上海到北京需要4小时,如果两车同时相向而行多长时间能够相遇?③妈妈给了小明一些钱,叫小明买铅笔和橡皮,可这些钱只能买8块橡皮或12支铅笔,如果铅笔和橡皮成套购买的话,能卖多少套?这几道题从表面上看之间没有什么关系,他们分别是工程问题、行程问题和单价、总价、数量问题,但是在教师精妙的引导,学生对它们进行分析、研究、比对等,就很容易地概括出他们的共同道理及其互相关系,它们都是工程问题中的特殊形式――归一问题。

然后我又引导学生用简练的数学语言,分析数量之间的关系,有序的表达出自己的思维过程。通过这种变式性问题的训练,既使学生获取了知识又培养和发展了学生的思维。同时让学生体验到了成功的愉悦,又激发了学生对数学课的学习兴趣。大大激起了学生渴求新知的欲望,有利于学生养成探讨、动脑思考的习惯,更有利于促进思维能力的发展。

4小学数学思维能力的培养与训练

鼓励合作交流,促进思维

思维和语言有着密切的联系。爱因斯坦说过:“一个人智力的发展和他形成的概念的方法,在很大程度上是取决于语言的。”思维是对客观事物间接地、概括地反映。虽然语言是思维的外壳,但语言本身具有概括性和间接性的功能。

如果语言不具备这些功能,人的思维,特别是抽象思维就难以进行,古人云:“言有心声,言乃说。”“说”离不开大脑的思维,并可促进大脑的思维。在课堂中我们常常会发现有些孩子叙述解题思路时总是一愣一愣的,有些孩子不乐于说,还有的说得不够完整,等等,这些常常让我们感到很苦恼。因此在数学课堂教学过程中,教师要积极创建一种民主和谐的课堂氛围,让学生敢说、乐说,不断给学生提供“说”的机会,鼓励学生把自己的想法跟同学交流。

设计相近的问题进行思维能力的培养与训练

学生在学习新知识前,教师设计与新知识相近或类似的问题,由易到难,让学生多构思几种方法,以便将各方面的知识融会贯通,开拓思路,使学生的思维能力得以训练。如在讲授“异分母分数加减”时,引入新课时,我先设计了这样几个问题:①整数、小数、同分母分数的加减法法则是怎样的?②整数、小数、同分母分数的相加减时,它们的分数单位相同吗?学生回答后,我又设计了这样相近的问题:③异分母的分数单位相同吗?能直接相加减吗?④异分母分数不能直接加减,应怎么办?

⑤怎样把异分母的分数变为同分母的分数?针对这些类似的问题教师要想方设法打开学生思维的大门,掀起学生思想的涟漪,使学生在积极的思维中进行逐一思考,学生就会很自然地进行类比思维,很容易的找出异分母分数相加减的计算方法。事实上,任何科学成就都是在思维的基础上发展而来的。所以我们的教师要在学生学习知识的过程中,去训练和发展他们的思维能力。古人提出的“学而不思则罔,思而不学则殆”是不无道理的。因此,只有在学习中培养和训练学生的思维能力,才能取得较好的效果、达到预期的目的。

相关推荐

热门文档

20 436770