首页 > 工作范文 > 工作计划 >

小学数学教研计划思维导图【精编4篇】

网友发表时间 438884

【导读】阿拉题库网友为您分享整理的“小学数学教研计划思维导图【精编4篇】”工作范文资料,供您参考学习,希望这篇工作文档对您有所帮助,喜欢就下载分享给朋友吧!

思维导图【第一篇】

思维导图又叫心智图,是表达发射性思维的有效的图形思维工具 。它简单却又极其有效,是一种革命性的思维工具。思维导图运用图文并重的技巧,把各级主题的关系用相互隶属与相关的层级图表现出来,把主题关键词与图像、颜色等建立记忆链接。思维导图充分运用左右脑的机能,利用记忆、阅读、思维的规律,协助人们在科学与艺术、逻辑与想象之间平衡发展,从而开启人类大脑的无限潜能。   思维导图是一种将放射性思考具体化的方法。我们知道放射性思考是人类大脑的自然思考方式,每一种进入大脑的资料,不论是感觉、记忆或是想法——包括文字、数字、符码、香气、食物、线条、颜色、意象、节奏、音符等,都可以成为一个思考中心,并由此中心向外发散出成千上万的关节点,每一个关节点代表与中心主题的一个连结,而每一个连结又可以成为另一个中心主题,再向外发散出成千上万的关节点,呈现出放射性立体结构,而这些关节的连结可以视为您的记忆,也就是您的个人数据库。   思维导图绘制技巧   思维导图是有效的思维模式,应用于记忆、学习、思考等的思维“地图”,有利于人脑的扩散思维的展开。思维导图已经在全球范围得到广泛应用,新加坡教育部将思维导图列为小学必修科目,包括大量的500强企业。思维导图的创始人是东尼·博赞。中国应用思维导图大约有20多年时间。

思维导图构建框架   可以直接将书籍的目录录入到思维导图中,也可以选择比较重要的部分录入。主要的目标是将书籍中最重视的部分框架清晰的反映在思维导图中。   思维导图录入重点   将书中的重点论证部分录入思维导图,同时将自己摘录、勾画的部分录入,这个时候不必变更书中原句,简单的录入即可。这时有两种内容,第一种是和书籍框架及论证有关的,放入导图的对应分支下;第二种是与框架无关,可以在导图中建立一个“杂项”的分支,将所有内容统统扔进这个分支下。   思维导图调整方式   如果读书的目的不是为了了解作者的思路或者纯粹和作者有关的东西,那么绝对不关心作者或者本书的思维框架如何,但是在书中可能关心其中某些部分。比如《如何阅读一本书》中,关心如何做分析阅读,如何做检视阅读,如何做主题阅读,那么可能要做三个主要的分支。   思维导图论证引入   将内容和论证放入相应分枝中,完成了整体框架的构建,这时候就是该细化的时候了。   思维导图处理杂项   大家没有忘记杂项中还有很多内容吧,处理一下这些句子,有些内容可以放入前面整理出的框架中,有些东西则和全书整体框架并不相关。   思维导图内容归档   比如管理一个专门的导图,日常杂项一个导图,谈读书系列一个导图。将杂项中的内容分门别类的归入这些导图中去,不必太过在意构架和体系,可以同样在它们中建立杂项,扔进去就OK了,等到想用的时候再说,到时候不过是一个搜集资料的过程而已。同时,最好注明该条出自哪本书和页码。   思维导图细化语言   细化每个分支的逻辑性和语言。   框架已经有了,每个分支下也有了一定内容,但是每个独立分支下的逻辑性并不清楚,需要将书中原话转变成自己理解的话语,尽力简化。同时,将这些句子的逻辑关系理清,用分支的形式体现出来,这时就有了一个层次、逻辑清楚的思维导图了。

初二数学第一章知识点【第二篇】

一、全等形

1、定义:能够完全重合的两个图形叫做全等图形,简称全等形。

2、一个图形经过翻折、平移和旋转等变换后所得到的图形一定与原图形全等。反之,两个全等的图形经过上述变换后一定能够互相重合。

二、全等多边形

1、定义:能够完全重合的多边形叫做全等多边形。互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

2、性质:

(1)全等多边形的对应边相等,对应角相等。

(2)全等多边形的面积相等。

三、全等三角形

1、全等符号:≌。如图,不是为:△ABC≌△ABC。读作:三角形ABC全等于三角形ABC。

2、全等三角形的判定定理:

(1)有两边和它们的夹角对应相等的两三角形全等。(即SAS,边角边)

(2)有两角和它们的夹边对应相等的两三角形全等。(即ASA,角边角)

(3)有两角和其中一角的对边对应相等的两三角形全等。(即AAS,角角边)

(4)有三边对应相等的两三角形全等。(即SSS,边边边)

(5)有斜边和一条直角边对应相等的两直角三角形全等。(即HL,斜边直角边)

3、全等三角形的性质:

(1)全等三角形的对应边相等、对应角相等

(2)全等三角形的周长相等、面积相等

(3)全等三角形对应边上的中线、高,对应角的平分线都相等。

4、全等三角形的作用:

(1)用于直接证明线段相等,角相等。

(2)用于证明直线的平行关系、垂直关系等。

(3)用于测量人不能的到达的路程的长短等。

(4)用于间接证明特殊的图形。(如证明等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形和梯形等)。

(5)用于解决有关等积等问题。

思维导图如何培养数学思维【第三篇】

模型准备阶段——培养学生的数学阅读、观察和分析能力

“模型应该来自情境,而学生则应该学习从情境中辨认模型,提出模型。”学会抽象概括数学模型是创造、识别、应用模型的前提。它能使学生理顺模型的来龙去脉,深刻理解数学模型的本质、特征,把握模型的衍生层次。教师应努力创设问题情境,做学生抽象数学模型的“助产师”,把学生置于研究现实的未知的问题情境之中,引导学生把数学问题提炼成简约的日常生活语言,再让学生把日常生活语言转化成数学语言,以促使学生把具体数量关系概括成一般的数量关系,使学生在探求解决问题的方法的过程中建立新的数学模型。

“模型准备”可以由教师直接提出或设计情境引入,让学生从生活现象中体会到一个比较清晰的数学问题。出示问题情境后,教师可以利用下面这个思维导图,让学生从情境中收集信息,并通过动脑想、动口说、动手做等方式,引导学生对信息进行分析、理解,培养学生的数学阅读、观察和分析能力。

模型假设阶段——培养学生的猜想、整合能力

模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,教师应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。教学时可以通过教师的引导,让学生针对问题特点和建模目的作出合理、简化的假设。

在这个环节,教师不应过早地对学生的假设进行评判,而应重点关注假设背后的思想,关注学生是否调动原有的知识经验,并引导学生在操作、证明、交流、质疑中用事实验证自己的假设,或纠正自己的错误假设,因势利导启发学生,鼓励学生积极开展思维活动。

2如何巧用思维导图的探讨

实践出真知

首先,在授课时注意课本知识点与生活的有机结合。如在学习几何图形时,可以让学生寻找生活中他们见到的图形,并让他们制作出来,让他们在具体的动手过程中去思考这些图形有什么特点。再如学习几何图形的拼接时,可以让学生自行去拼接,让他们拼接成自己喜欢的动物、房子、树木、数字、电视等等。这样在具体的知识点的教学过程中不仅可以直观地展示课本的知识点,还可以有效地激发学生的想象,从而在实践中提升自我抽象思维能力。

其次,注重知识点与生活场景之间的联系和层次。在数学教学实践过程中,我们通常会赋予这个知识点具体的生活情境,从而在具体的情境中引导学生得出相应的结论。但这种生活场景应该是生活中会出现的或者说它是有概率会发生的,即生活场景与知识点的联系要具有充分的合理性,唯有这样,才会有效激发学生去进行生活化的思考。而所谓的层次问题指的是这种生活场景一定要是学生尽可能会见到的,而不是小学生目前接触不到的生活场景。唯有这样,才可以让学生进行合理化的思考,而这样的思考才是有价值的。这样有价值的思考也才会提高学生的抽象思维能力。

从思维定向走出去

首先,培养学生独立思考的能力。教学是一个双向的过程,不仅需要教师对于知识的讲解与渗透,更需要学生自身的独立思考。因此在日常的教学活动中,要注重让学生独立思考,去思考一个题目为什么有这样的解法,去思考为什么会有乘法口诀。在平时的教学中也要多留一些有趣的、和日常生活相关的数学课后思考题,从而让学生在对于这些问题的探讨与思考中逐渐养成自我思考与探究的习惯。而这样独立思考的能力正是培养学生抽象思维能力的必备条件。

其次,形成分组讨论机制。抽象思维的培养过程需要靠具体的教学活动来完成。分组讨论机制有助于学生在自主讨论学习中汲取别人的思维模式从而能够完善自我思维。与此同时,分组讨论机制有助于拓宽学生对于同一种问题的不同理解,从而为问题的解决提供多种可能性,而对于问题的不同可能性的思考有助于学生走出自我的思维定向,进而提升自我的抽象思维能力。

如何使用数学思维导图【第四篇】

1如何使用数学思维导图

注重应用的示范与引导

与传统的教学方法相比,运用思维思维导图开展教学优势明显,仅用简单的图形及文字,便可清楚的了解数学知识点间的内在联系,降低了学生掌握难度,有效避免学生畏难情绪的出现,增强学生学习数学知识的信心。因此,初中数学教学实践中,教师不仅要注重思维导图的应用,而且还应教会学生运用思维导图,帮助总结所学的数学知识,为此,教师应通过正确的示范与引导,使学生掌握思维导图画法,使其应用到实际的学习过程中。

在给学生进行示范及引导时,一方面教师应为学生讲解思维导图的画法及应注意事项,确保所画的思维导图能涵盖所学的重要知识点。另一方面,为激发学生画思维导图的积极性,教师可鼓励不同小组、不同学生之间进行思维导图绘画比赛,不断提高学生绘画思维导图的熟练程度,从而更好的应用到实际的学习活动中。

提高运用思维导图意识

首先,注重思维导图应用的合理性。教学实践中,教师应把握初中数学教学重点知识,认真分析与重点知识关联的其他知识点,并将思维导图板书在黑板上,展示给学生。同时,依托思维导图帮助学生回顾所学知识点,并适当的提问学生,检查学生掌握数学知识情况,使学生能够对照自身数学知识掌握情况查漏补缺。其次,注重思维导图在不同教学环节中的融入。初中数学知识点多而零碎,为此,无论是新课导入还是旧课回顾,教师应注重运用思维导图引导教学活动的开展。最后,做好总结与反思。教师运用思维导图时,应根据学生反馈效果,对思维导图的应用进行总结与反思,了解思维导图应用中存在的不足,并及时补充遗漏的知识,使得思维导图更为完善,更好的为初中数学教学活动服务。

例如,在绘制全等三角形思维导图时,起初教师并未绘制角平分线性质这一知识点,但考虑到角平分线性质和全等三角形之间存在一定关联,尤其是一些题目中全等三角形判定时需应用到角平分线性质知识点,最终对之前的思维导图进行补充,使得绘制的思维导图更为完善

2数学教学中如何运用思维导图

运用思维导图,为学生学习数学打牢基础

在初中数学教学中,让学生掌握基础性的概念和定义,并能够深入的理解这些内容,对发展学生的数学能力有着非常重要的作用。 只有将数学基础知识进行牢固的掌握,才能实现对这些定理、定义的运用,这成为解决数学题目的第一步。 通过一些初中数学调研资料可知,学生做错题目或因为有难度而放弃答题,归根到底就是学生对基础定理理解不够深刻和牢固,使得其在解题的过程中对习题没有读懂,或理解出现偏差,导致学生数学学习困难的发生。

因此,在初中数学教学中,要加强对数学的基本定理以及定义方面的教学力度,包括教学时间以及课前准备方面。 在以往的教学模式中,教师更多的是让学生进行死记硬背,通过让学生抄写很多遍,或是在课堂上背诵的模式所得到的效果不佳。 而应该从思维训练的根本上入手,提高学生思维的灵活性。

鼓励学生构建自己的思维导图

在数学的教学和使用中,思维能力的好坏往往对数学的学习和使用效能有着较大的影响。 在目前的教学实际当中,初中数学的目标就是要对学生的思维和潜能进行开发。 采用新的教学理念和方法,以让学生能够掌握学习的方法、实现学生独立学习为根本的教学目标。 鉴于此,教师在教学过程中应该起到良好的导向作用,通过介绍一些适合学生的学习方法,提高学生学习的自主性。

将思维导图应用于初中数学教学,可以通过学生在构建自己的思维导图过程中,发现自己存在的知识漏洞,然后及时采用有效的方式来改正学习的不足,逐层攻克学习的困难以取得更大进步。 与此同时,教师在对这些难点进行解答之后,可以结合学生的特性,构建一个关键节点来让学生完善思维导图。

3思维导图在数学教学中的应用

增强复习效果

在初中数学教学中,仅仅依靠课堂上的45分钟是无法达到教学要求的,而复习作为一个重要阶段,初中数学复习的好坏同样关系到数学教学质量。在复习阶段,利用思维导图,将需要复习的知识点通过图形连接在一起,让学生一目了然地进行复习。首先,利用思维导图便于学生记忆和复习。课堂上只有45分钟,而一节课所要复习的知识点非常多,一张思维导图可以将课堂上的知识点进行汇总,让学生在复习的过程可以不断地对自己的数学思维导图进行补充与完善。

提高数学预习效果

在初中数学教学过程中,课前预习是数学学习的一个重要环节。学生要想学好数学,就必须做好课前预习。利用思维导图进行预习,将要预习的内容通过图形的方式展现出来,帮助学生明确目标,让学生抓住预习的重点,理清自己的思路。同时,利用思维导图,可以让学生带有目的性地去听课,进而提高效率,方便学生消化知识。通过检查学生的思维导图,教师能够迅速找到学生对该内容的思维障碍点,确定重点与难点,使讲课更加有针对性和实效性,真正做到因材施教。

扩散解题思维

在初中数学教学中,习题是提高数学学习效率的一种重要途径,利用思维导图,学生可以发挥自己的思考方式,根据自己的需要去解析题目,并找出解题思路。思维导图作为一种有效的认知工具,它具有发散性功能,利用思维道路分析问题,有助于学生对已掌握知识的充分调动,从而解决问题。

4运用思维导图的作用

(1)优化知识结构,实现自主学习。

在教学过程中,思维导图的运用,不仅可以帮助学生清晰地掌握知识的逻辑结构,还可以突出教学难点重点,优化课堂教学结构,达到教学效果最大化。在数学新课程的改革中,明确提出要建立以学生为课堂主体的教学模式,以培养学生自主学习能力和思考能力为多层次的教学目标,而不是简简单单教学内容的掌握。因此,传统的数学教学方法已经没有办法满足新的教学需求。在这样一种数学教学现状下,如何优化知识结构以实现学生的自主学习成了教师应该予以考虑的重大问题。思维导图的出现,为数学教学注入新鲜血液。在数学教学体系中,教师利用思维导图将数学知识点直观而具象、系统而完整地展示给学生,学生通过思维导图而得以在脑海里建立起经过自主学习和思考归纳后的知识体系,从而既实现了教学层次方面的知识结构优化,又能够实现提高学生自主学习能力的教学需求。

例如,在进行“一个因数是两位数的乘法”的教学时,教师要总结这一课程中的知识点:有口算乘法、笔算乘法及一个因数是两位数的乘法的运算规则。一般情况下,教师都会采用举例演练、提问引导、课堂巩固的方式对学生进行知识点的讲授。但是,由于教师讲授时,例题繁多,知识杂乱,对于学生来说存在一定的理解困难。学生必定会产生一种畏难心理,并对教师产生相应的依赖心理,难以实现自主学习这一教学目标。因此,教师在进行常规的教学实践后,可以利用思维导图的方法对知识进行总结,将整节课的知识点进行一个结构上的梳理和归纳,引导学生进行更为深入的自主学习和思考,提高学生对一个因数是两位数乘法算理的理解能力。

(2)突破教学难点,提高教学质量。

在数学教学中,抽象概念的理解和逻辑关系的掌握是教学难点。抽象的概念用语言表达出来仍旧十分抽象,小学生缺乏逻辑思维能力,存在抽象概念的理解障碍。同时,相似的概念则十分容易被混淆。教师运用传统的教学讲解难以彻底解决这一教学难点,学生极易因概念的不理解或者混淆而产生知识点掌握不牢靠等一系列后续问题。而思维导图的运用,可以将那些容易混淆的知识点和概念进行对比,区别它们的异同。

相关推荐

热门文档

40 438884